Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59000 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }M_{2}\phi_{1}^{2}$ | 1.1812 | 1.3956 | 0.8464 | [X:[1.2865, 1.5712], M:[0.8577, 1.1423], q:[0.499, 0.2144], qb:[0.2144, 0.499], phi:[0.4288]] | [X:[[0, -3], [0, 1]], M:[[0, -2], [0, 2]], q:[[-1, 7], [-1, 3]], qb:[[1, -4], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ 2}\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}X_{1}$ | 2 | t^2.14 + 2*t^2.57 + t^2.99 + 2*t^3.43 + 3*t^3.86 + 2*t^4.07 + 2*t^4.28 + 5*t^4.71 + 2*t^4.92 + t^5.13 + t^5.15 + 2*t^5.36 + 5*t^5.57 + 2*t^5.79 + t^5.99 + 2*t^6. + 4*t^6.21 + 4*t^6.42 + 4*t^6.43 + 4*t^6.64 + 8*t^6.85 + 4*t^7.06 - 2*t^7.08 + 2*t^7.28 + 9*t^7.29 + 6*t^7.5 + 9*t^7.71 + 4*t^7.72 + 2*t^7.92 + 2*t^7.93 + t^8.13 + 11*t^8.14 + 10*t^8.35 + 2*t^8.36 + 8*t^8.56 + 2*t^8.57 + 10*t^8.78 + t^8.98 + 13*t^8.99 - t^4.29/y - t^5.57/y - t^6.43/y - t^6.86/y - t^7.28/y + (2*t^7.71)/y + t^8.13/y - (3*t^8.15)/y + (3*t^8.57)/y - t^4.29*y - t^5.57*y - t^6.43*y - t^6.86*y - t^7.28*y + 2*t^7.71*y + t^8.13*y - 3*t^8.15*y + 3*t^8.57*y | g2^3*t^2.14 + (2*t^2.57)/g2^2 + g2^7*t^2.99 + 2*g2^2*t^3.43 + (3*t^3.86)/g2^3 + (g1^3*t^4.07)/g2^9 + (g2^12*t^4.07)/g1^3 + 2*g2^6*t^4.28 + 5*g2*t^4.71 + (g1^3*t^4.92)/g2^5 + (g2^16*t^4.92)/g1^3 + g2^10*t^5.13 + t^5.15/g2^4 + (g1^3*t^5.36)/g2^10 + (g2^11*t^5.36)/g1^3 + 5*g2^5*t^5.57 + (g1^3*t^5.79)/g2^15 + (g2^6*t^5.79)/g1^3 + g2^14*t^5.99 + 2*t^6. + (2*g1^3*t^6.21)/g2^6 + (2*g2^15*t^6.21)/g1^3 + 4*g2^9*t^6.42 + (4*t^6.43)/g2^5 + (2*g1^3*t^6.64)/g2^11 + (2*g2^10*t^6.64)/g1^3 + 8*g2^4*t^6.85 + (2*g1^3*t^7.06)/g2^2 + (2*g2^19*t^7.06)/g1^3 - (g1^3*t^7.08)/g2^16 - (g2^5*t^7.08)/g1^3 + 2*g2^13*t^7.28 + (9*t^7.29)/g2 + (3*g1^3*t^7.5)/g2^7 + (3*g2^14*t^7.5)/g1^3 + 9*g2^8*t^7.71 + (4*t^7.72)/g2^6 + g1^3*g2^2*t^7.92 + (g2^23*t^7.92)/g1^3 + (g1^3*t^7.93)/g2^12 + (g2^9*t^7.93)/g1^3 + g2^17*t^8.13 + (g1^6*t^8.14)/g2^18 + 9*g2^3*t^8.14 + (g2^24*t^8.14)/g1^6 + (5*g1^3*t^8.35)/g2^3 + (5*g2^18*t^8.35)/g1^3 + (g1^3*t^8.36)/g2^17 + (g2^4*t^8.36)/g1^3 + 8*g2^12*t^8.56 + (2*t^8.57)/g2^2 + (5*g1^3*t^8.78)/g2^8 + (5*g2^13*t^8.78)/g1^3 + g2^21*t^8.98 + (g1^6*t^8.99)/g2^14 + 11*g2^7*t^8.99 + (g2^28*t^8.99)/g1^6 - t^4.29/(g2*y) - t^5.57/(g2^2*y) - (g2^2*t^6.43)/y - t^6.86/(g2^3*y) - (g2^6*t^7.28)/y + (2*g2*t^7.71)/y + (g2^10*t^8.13)/y - (3*t^8.15)/(g2^4*y) + (3*g2^5*t^8.57)/y - (t^4.29*y)/g2 - (t^5.57*y)/g2^2 - g2^2*t^6.43*y - (t^6.86*y)/g2^3 - g2^6*t^7.28*y + 2*g2*t^7.71*y + g2^10*t^8.13*y - (3*t^8.15*y)/g2^4 + 3*g2^5*t^8.57*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57639 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ | 1.2512 | 1.4516 | 0.8619 | [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] | t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y | detail |