Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58998 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }q_{1}^{2}\tilde{q}_{1}^{2}$ 1.3875 1.5627 0.8879 [X:[1.3996], M:[0.6998, 1.0994], q:[0.4107, 0.7109], qb:[0.5893, 0.4879], phi:[0.3002]] [X:[[0, 2]], M:[[0, 1], [0, 3]], q:[[-1, 7], [-1, 6]], qb:[[1, -7], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.1 + t^2.7 + t^3. + t^3.3 + 2*t^3.6 + t^3.9 + 2*t^4.2 + 2*t^4.5 + 3*t^4.8 + t^5.39 + 2*t^5.4 + t^5.5 + t^5.6 + 3*t^5.7 + t^5.9 + t^5.99 - 3*t^6. + 2*t^6.29 + 2*t^6.3 + 3*t^6.4 + t^6.5 + 5*t^6.6 + t^6.8 + 4*t^6.89 - 2*t^6.9 + t^7.09 - t^7.1 + 5*t^7.19 + t^7.2 + 2*t^7.3 + t^7.4 + t^7.49 + 8*t^7.5 - t^7.6 + t^7.7 + 5*t^7.8 - 2*t^7.9 - 2*t^8. + t^8.01 + 7*t^8.09 - t^8.1 - t^8.11 + t^8.19 + t^8.2 + t^8.29 - t^8.3 + 2*t^8.39 + 10*t^8.4 + t^8.5 + t^8.6 + t^8.69 + 2*t^8.7 - 2*t^8.8 + t^8.89 - 2*t^8.9 + 11*t^8.99 + t^8.7/y^2 - t^3.9/y - t^4.8/y - t^6./y - t^6.6/y - (2*t^6.9)/y - t^7.2/y - (2*t^7.5)/y - t^8.1/y - t^8.4/y + t^8.7/y + t^8.99/y - t^3.9*y - t^4.8*y - t^6.*y - t^6.6*y - 2*t^6.9*y - t^7.2*y - 2*t^7.5*y - t^8.1*y - t^8.4*y + t^8.7*y + t^8.99*y + t^8.7*y^2 g2*t^2.1 + g2^7*t^2.7 + t^3. + g2^3*t^3.3 + 2*g2^6*t^3.6 + t^3.9/g2 + 2*g2^2*t^4.2 + 2*g2^5*t^4.5 + (2*t^4.8)/g2^2 + g2^8*t^4.8 + g2^14*t^5.39 + 2*g2^4*t^5.4 + (g2^19*t^5.5)/g1^3 + (g1^3*t^5.6)/g2^8 + t^5.7/g2^3 + 2*g2^7*t^5.7 + (g1^3*t^5.9)/g2^15 + g2^10*t^5.99 - 3*t^6. + 2*g2^13*t^6.29 - t^6.3/g2^7 + 3*g2^3*t^6.3 + (3*g2^18*t^6.4)/g1^3 + (g1^3*t^6.5)/g2^9 + 5*g2^6*t^6.6 + (g1^3*t^6.8)/g2^16 + 4*g2^9*t^6.89 - (2*t^6.9)/g2 + (g1^3*t^7.09)/g2^3 - (g1^3*t^7.1)/g2^13 + 5*g2^12*t^7.19 - t^7.2/g2^8 + 2*g2^2*t^7.2 + (2*g2^17*t^7.3)/g1^3 + (g1^3*t^7.4)/g2^10 + g2^15*t^7.49 + 8*g2^5*t^7.5 - (g2^20*t^7.6)/g1^3 + (g1^3*t^7.7)/g2^17 + t^7.8/g2^2 + 4*g2^8*t^7.8 - (2*g2^13*t^7.9)/g1^3 - (2*g1^3*t^8.)/g2^14 + (g1^3*t^8.01)/g2^24 + 6*g2^11*t^8.09 + g2^21*t^8.09 - g2*t^8.1 - t^8.11/g2^9 + (g2^26*t^8.19)/g1^3 + (g2^16*t^8.2)/g1^3 + (g1^3*t^8.29)/g2 - (g1^3*t^8.3)/g2^21 + 2*g2^14*t^8.39 + 10*g2^4*t^8.4 + (g2^19*t^8.5)/g1^3 + (g1^3*t^8.6)/g2^8 + g2^17*t^8.69 + (3*t^8.7)/g2^3 - g2^7*t^8.7 - (3*g2^12*t^8.8)/g1^3 + (g2^22*t^8.8)/g1^3 + (g1^3*t^8.89)/g2^5 - (2*g1^3*t^8.9)/g2^15 + 9*g2^10*t^8.99 + 2*g2^20*t^8.99 + t^8.7/(g2^3*y^2) - t^3.9/(g2*y) - t^4.8/(g2^2*y) - t^6./y - (g2^6*t^6.6)/y - (2*t^6.9)/(g2*y) - (g2^2*t^7.2)/y - (2*g2^5*t^7.5)/y - t^7.8/(g2^2*y) + (g2^8*t^7.8)/y - (g2*t^8.1)/y - (g2^4*t^8.4)/y - t^8.7/(g2^3*y) + (2*g2^7*t^8.7)/y + (g2^10*t^8.99)/y - (t^3.9*y)/g2 - (t^4.8*y)/g2^2 - t^6.*y - g2^6*t^6.6*y - (2*t^6.9*y)/g2 - g2^2*t^7.2*y - 2*g2^5*t^7.5*y - (t^7.8*y)/g2^2 + g2^8*t^7.8*y - g2*t^8.1*y - g2^4*t^8.4*y - (t^8.7*y)/g2^3 + 2*g2^7*t^8.7*y + g2^10*t^8.99*y + (t^8.7*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61217 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.3815 1.5498 0.8914 [X:[1.4133], M:[0.7066, 1.1199], q:[0.3954, 0.6888], qb:[0.6046, 0.551], phi:[0.2934]] t^2.12 + t^2.84 + t^3. + t^3.36 + 2*t^3.72 + t^3.88 + 2*t^4.24 + 2*t^4.6 + 2*t^4.76 + t^4.96 + t^5.32 + 2*t^5.48 + t^5.64 + t^5.68 + 2*t^5.84 - 2*t^6. - t^3.88/y - t^4.76/y - t^6./y - t^3.88*y - t^4.76*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57498 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4005 1.5908 0.8804 [X:[1.3547], M:[0.795, 1.0321], q:[0.3681, 0.6907], qb:[0.5143, 0.4911], phi:[0.3226]] t^2.39 + t^2.58 + t^2.65 + t^3.1 + 2*t^3.55 + t^3.61 + t^4.06 + 2*t^4.51 + 2*t^4.58 + t^4.77 + t^4.96 + t^5.16 + t^5.22 + t^5.25 + t^5.29 + t^5.46 + 2*t^5.48 + t^5.53 + t^5.55 + t^5.67 + t^5.74 + t^5.93 - 4*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y detail