Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58963 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.5164 | 1.7659 | 0.8587 | [X:[], M:[0.9853, 0.6802, 0.6872], q:[0.5131, 0.4836], qb:[0.5016, 0.4947], phi:[0.3345]] | [X:[], M:[[1, 6, 0], [-1, -7, 1], [-1, -1, -5]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{5}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$ | ${}$ | -4 | t^2.01 + t^2.04 + t^2.06 + t^2.93 + 2*t^2.96 + t^3.01 + t^3.02 + t^4.01 + t^4.03 + 2*t^4.05 + t^4.07 + t^4.08 + t^4.1 + t^4.12 + 2*t^4.94 + 3*t^4.96 + t^4.98 + 3*t^5. + 3*t^5.02 + 2*t^5.03 + 2*t^5.05 + t^5.06 + t^5.07 + t^5.08 + t^5.44 + t^5.48 + t^5.5 + t^5.53 + t^5.87 + 2*t^5.89 + 2*t^5.91 + t^5.95 + t^5.96 + 2*t^5.97 + t^5.98 - 4*t^6. + t^6.02 + 2*t^6.03 + 3*t^6.05 + t^6.07 + t^6.08 + 2*t^6.09 + 2*t^6.11 + t^6.12 + t^6.13 + t^6.14 + t^6.16 + t^6.19 + t^6.45 + t^6.48 + t^6.5 + t^6.54 - t^6.92 + 2*t^6.95 + t^6.96 + 3*t^6.97 + 4*t^6.98 + 4*t^7. + 4*t^7.02 + 6*t^7.04 + t^7.05 + 6*t^7.06 + 3*t^7.07 + 3*t^7.08 + 3*t^7.09 + t^7.1 + 2*t^7.11 + 2*t^7.13 + t^7.15 + t^7.36 + t^7.45 + t^7.46 + 2*t^7.48 + 2*t^7.5 + t^7.52 + t^7.53 + 3*t^7.54 + t^7.56 + t^7.57 + t^7.59 + t^7.63 + 2*t^7.88 + 5*t^7.9 + t^7.91 + 3*t^7.92 + 2*t^7.93 + 5*t^7.95 + 8*t^7.97 + 4*t^7.99 + t^8. - t^8.01 + t^8.02 + 2*t^8.03 - t^8.04 + 3*t^8.05 - t^8.06 + 4*t^8.07 + t^8.08 + t^8.09 + 3*t^8.1 + 2*t^8.11 + 2*t^8.12 + 2*t^8.13 + t^8.14 + 2*t^8.15 + t^8.16 + 2*t^8.17 + t^8.18 + t^8.19 + t^8.2 + t^8.23 + t^8.25 + t^8.38 + t^8.4 + t^8.41 - t^8.42 + 2*t^8.43 + 2*t^8.45 + t^8.47 + 3*t^8.49 + t^8.5 + t^8.51 + t^8.52 + 2*t^8.54 + t^8.56 + t^8.8 + 2*t^8.83 + 2*t^8.85 + 2*t^8.87 + t^8.88 + t^8.89 + 2*t^8.9 + t^8.91 + t^8.92 - 5*t^8.93 - 7*t^8.96 + 3*t^8.97 + 4*t^8.98 + 6*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.04/y - t^6.07/y - t^6.94/y - (2*t^6.96)/y - (2*t^7.01)/y - t^7.03/y + t^7.1/y + t^7.94/y + t^7.96/y + t^7.98/y + (4*t^8.)/y + t^8.02/y + t^8.06/y - t^8.11/y - t^8.13/y + (2*t^8.89)/y + t^8.91/y + t^8.96/y + t^8.98/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.04*y - t^6.07*y - t^6.94*y - 2*t^6.96*y - 2*t^7.01*y - t^7.03*y + t^7.1*y + t^7.94*y + t^7.96*y + t^7.98*y + 4*t^8.*y + t^8.02*y + t^8.06*y - t^8.11*y - t^8.13*y + 2*t^8.89*y + t^8.91*y + t^8.96*y + t^8.98*y | (g2^2*t^2.01)/g3^2 + (g3*t^2.04)/(g1*g2^7) + t^2.06/(g1*g2*g3^5) + g1*g3^6*t^2.93 + 2*g1*g2^6*t^2.96 + (g2^3*t^3.01)/g3^3 + (g3^6*t^3.02)/(g1*g2^12) + (g2^4*t^4.01)/g3^4 + (g3^5*t^4.03)/(g1*g2^11) + (2*t^4.05)/(g1*g2^5*g3) + (g2*t^4.07)/(g1*g3^7) + (g3^2*t^4.08)/(g1^2*g2^14) + t^4.1/(g1^2*g2^8*g3^4) + t^4.12/(g1^2*g2^2*g3^10) + 2*g1*g2^2*g3^4*t^4.94 + (3*g1*g2^8*t^4.96)/g3^2 + (g3^7*t^4.98)/g2^7 + (3*g3*t^5.)/g2 + (3*g2^5*t^5.02)/g3^5 + (2*g3^4*t^5.03)/(g1*g2^10) + (2*t^5.05)/(g1*g2^4*g3^2) + (g3^7*t^5.06)/(g1^2*g2^19) + (g2^2*t^5.07)/(g1*g3^8) + (g3*t^5.08)/(g1^2*g2^13) + (g1*t^5.44)/(g2^11*g3) + g2^7*g3^11*t^5.48 + g2^13*g3^5*t^5.5 + t^5.53/(g1*g2^23*g3) + g1^2*g3^12*t^5.87 + 2*g1^2*g2^6*g3^6*t^5.89 + 2*g1^2*g2^12*t^5.91 + g1*g2^3*g3^3*t^5.95 + (g3^12*t^5.96)/g2^12 + (2*g1*g2^9*t^5.97)/g3^3 + (g3^6*t^5.98)/g2^6 - 4*t^6. + (g2^6*t^6.02)/g3^6 + (2*g3^3*t^6.03)/(g1*g2^9) + (2*t^6.05)/(g1*g2^3*g3^3) + (g3^12*t^6.05)/(g1^2*g2^24) + (g3^6*t^6.07)/(g1^2*g2^18) + (g2^3*t^6.08)/(g1*g3^9) + (2*t^6.09)/(g1^2*g2^12) + (2*t^6.11)/(g1^2*g2^6*g3^6) + (g3^3*t^6.12)/(g1^3*g2^21) + t^6.13/(g1^2*g3^12) + t^6.14/(g1^3*g2^15*g3^3) + t^6.16/(g1^3*g2^9*g3^9) + t^6.19/(g1^3*g2^3*g3^15) + (g1*t^6.45)/(g2^10*g3^2) + g2^8*g3^10*t^6.48 + g2^14*g3^4*t^6.5 + t^6.54/(g1*g2^22*g3^2) - (g1^2*g2^13*t^6.92)/g3 + 2*g1*g2^4*g3^2*t^6.95 + (g3^11*t^6.96)/g2^11 + (3*g1*g2^10*t^6.97)/g3^4 + (4*g3^5*t^6.98)/g2^5 + (4*g2*t^7.)/g3 + (3*g2^7*t^7.02)/g3^7 + (g3^8*t^7.02)/(g1*g2^14) + (6*g3^2*t^7.04)/(g1*g2^8) + (g3^11*t^7.05)/(g1^2*g2^23) + (6*t^7.06)/(g1*g2^2*g3^4) + (3*g3^5*t^7.07)/(g1^2*g2^17) + (3*g2^4*t^7.08)/(g1*g3^10) + (3*t^7.09)/(g1^2*g2^11*g3) + (g3^8*t^7.1)/(g1^3*g2^26) + (2*t^7.11)/(g1^2*g2^5*g3^7) + (g2*t^7.13)/(g1^2*g3^13) + (g3^2*t^7.13)/(g1^3*g2^20) + t^7.15/(g1^3*g2^14*g3^4) + (g1^3*g2^3*t^7.36)/g3^3 + (2*g1*t^7.45)/(g2^9*g3^3) - g1*g2^18*g3^6*t^7.45 + g2^3*g3^15*t^7.46 + 2*g2^9*g3^9*t^7.48 + 2*g2^15*g3^3*t^7.5 + (g3^12*t^7.52)/g1 + (g2^21*t^7.53)/g3^3 + (2*t^7.54)/(g1*g2^21*g3^3) + (g2^6*g3^6*t^7.54)/g1 + (g2^12*t^7.56)/g1 + t^7.57/(g1^2*g2^30) + t^7.59/(g1^2*g2^24*g3^6) + t^7.63/(g1^3*g2^33*g3^3) + 2*g1^2*g2^2*g3^10*t^7.88 + 5*g1^2*g2^8*g3^4*t^7.9 + (g1*g3^13*t^7.91)/g2^7 + (3*g1^2*g2^14*t^7.92)/g3^2 + (2*g1*g3^7*t^7.93)/g2 + 5*g1*g2^5*g3*t^7.95 + (5*g1*g2^11*t^7.97)/g3^5 + (3*g3^10*t^7.97)/g2^10 + (4*g3^4*t^7.99)/g2^4 + (g3^13*t^8.)/(g1*g2^19) - (g2^2*t^8.01)/g3^2 + (g3^7*t^8.02)/(g1*g2^13) + (2*g2^8*t^8.03)/g3^8 - (g3*t^8.04)/(g1*g2^7) + (3*g3^10*t^8.05)/(g1^2*g2^22) - t^8.06/(g1*g2*g3^5) + (4*g3^4*t^8.07)/(g1^2*g2^16) + (g2^5*t^8.08)/(g1*g3^11) + (g3^13*t^8.09)/(g1^3*g2^31) + (3*t^8.1)/(g1^2*g2^10*g3^2) + (2*g3^7*t^8.11)/(g1^3*g2^25) + (2*t^8.12)/(g1^2*g2^4*g3^8) + (2*g3*t^8.13)/(g1^3*g2^19) + (g2^2*t^8.14)/(g1^2*g3^14) + (2*t^8.15)/(g1^3*g2^13*g3^5) + (g3^4*t^8.16)/(g1^4*g2^28) + (2*t^8.17)/(g1^3*g2^7*g3^11) + t^8.18/(g1^4*g2^22*g3^2) + t^8.19/(g1^3*g2*g3^17) + t^8.2/(g1^4*g2^16*g3^8) + t^8.23/(g1^4*g2^10*g3^14) + t^8.25/(g1^4*g2^4*g3^20) + (g1^2*g3^5*t^8.38)/g2^11 + (g1^2*t^8.4)/(g2^5*g3) + g1*g2^7*g3^17*t^8.41 - (g1^2*g2*t^8.42)/g3^7 + 2*g1*g2^13*g3^11*t^8.43 + (2*g1*t^8.45)/(g2^8*g3^4) - (g1*g2^25*t^8.47)/g3 + (2*g3^5*t^8.47)/g2^23 + t^8.49/(g2^17*g3) + 2*g2^10*g3^8*t^8.49 + (g3^17*t^8.5)/(g1*g2^5) - t^8.51/(g2^11*g3^7) + 2*g2^16*g3^2*t^8.51 + (g2*g3^11*t^8.52)/g1 + (2*t^8.54)/(g1*g2^20*g3^4) + (g3^5*t^8.56)/(g1^2*g2^35) + g1^3*g3^18*t^8.8 + 2*g1^3*g2^6*g3^12*t^8.83 + 2*g1^3*g2^12*g3^6*t^8.85 + 2*g1^3*g2^18*t^8.87 + g1^2*g2^3*g3^9*t^8.88 + (g1*g3^18*t^8.89)/g2^12 + 2*g1^2*g2^9*g3^3*t^8.9 + (g1*g3^12*t^8.91)/g2^6 + (g1^2*g2^15*t^8.92)/g3^3 - 5*g1*g3^6*t^8.93 - 7*g1*g2^6*t^8.96 + (3*g3^9*t^8.97)/g2^9 + (3*g1*g2^12*t^8.98)/g3^6 + (g3^18*t^8.98)/(g1*g2^24) + (6*g3^3*t^8.99)/g2^3 - (g2*t^4.)/(g3*y) - (g2^2*t^5.01)/(g3^2*y) - (g2^3*t^6.01)/(g3^3*y) - t^6.04/(g1*g2^6*y) - t^6.07/(g1*g3^6*y) - (g1*g2*g3^5*t^6.94)/y - (2*g1*g2^7*t^6.96)/(g3*y) - (2*g2^4*t^7.01)/(g3^4*y) - (g3^5*t^7.03)/(g1*g2^11*y) + t^7.1/(g1^2*g2^8*g3^4*y) + (g1*g2^2*g3^4*t^7.94)/y + (g1*g2^8*t^7.96)/(g3^2*y) + (g3^7*t^7.98)/(g2^7*y) + (4*g3*t^8.)/(g2*y) + (g2^5*t^8.02)/(g3^5*y) + (g3^7*t^8.06)/(g1^2*g2^19*y) - t^8.11/(g1^2*g2^7*g3^5*y) - t^8.13/(g1^2*g2*g3^11*y) + (2*g1^2*g2^6*g3^6*t^8.89)/y + (g1^2*g2^12*t^8.91)/y + (g3^12*t^8.96)/(g2^12*y) + (g3^6*t^8.98)/(g2^6*y) - (g2*t^4.*y)/g3 - (g2^2*t^5.01*y)/g3^2 - (g2^3*t^6.01*y)/g3^3 - (t^6.04*y)/(g1*g2^6) - (t^6.07*y)/(g1*g3^6) - g1*g2*g3^5*t^6.94*y - (2*g1*g2^7*t^6.96*y)/g3 - (2*g2^4*t^7.01*y)/g3^4 - (g3^5*t^7.03*y)/(g1*g2^11) + (t^7.1*y)/(g1^2*g2^8*g3^4) + g1*g2^2*g3^4*t^7.94*y + (g1*g2^8*t^7.96*y)/g3^2 + (g3^7*t^7.98*y)/g2^7 + (4*g3*t^8.*y)/g2 + (g2^5*t^8.02*y)/g3^5 + (g3^7*t^8.06*y)/(g1^2*g2^19) - (t^8.11*y)/(g1^2*g2^7*g3^5) - (t^8.13*y)/(g1^2*g2*g3^11) + 2*g1^2*g2^6*g3^6*t^8.89*y + g1^2*g2^12*t^8.91*y + (g3^12*t^8.96*y)/g2^12 + (g3^6*t^8.98*y)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57689 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4957 | 1.7262 | 0.8665 | [X:[], M:[0.9832, 0.6815], q:[0.5141, 0.4805], qb:[0.5027, 0.4914], phi:[0.3352]] | t^2.01 + t^2.04 + t^2.92 + 2*t^2.95 + 2*t^3.02 + t^3.92 + 2*t^4.02 + 2*t^4.06 + t^4.09 + 2*t^4.93 + 4*t^4.96 + 2*t^4.99 + 3*t^5.03 + 3*t^5.06 + t^5.43 + t^5.46 + t^5.5 + t^5.53 + t^5.83 + 2*t^5.87 + 2*t^5.9 + 3*t^5.93 + 4*t^5.97 - 4*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y | detail |