Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58956 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4393 1.6828 0.8553 [X:[], M:[0.8947, 0.8947], q:[0.3911, 0.496], qb:[0.5564, 0.3458], phi:[0.3684]] [X:[], M:[[-3, 3], [-3, 3]], q:[[2, -8], [-14, 8]], qb:[[6, 0], [0, 6]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}$ -3 2*t^2.21 + t^2.53 + 2*t^2.68 + t^2.84 + t^3.16 + t^3.63 + t^3.95 + t^4.26 + 4*t^4.42 + 3*t^4.74 + t^4.85 + 4*t^4.89 + t^4.94 + 4*t^5.05 + 2*t^5.21 + t^5.25 + 6*t^5.37 + t^5.48 + 2*t^5.53 + t^5.68 + 4*t^5.84 + t^5.95 - 3*t^6. + t^6.05 + 3*t^6.16 + 2*t^6.31 + t^6.36 + t^6.43 + 3*t^6.47 + t^6.59 + 7*t^6.63 + 2*t^6.79 + t^6.84 + 8*t^6.95 - t^6.99 + 3*t^7.06 + 6*t^7.11 + 3*t^7.15 - t^7.22 + 10*t^7.26 + t^7.37 + 5*t^7.42 + 4*t^7.47 + t^7.53 + 14*t^7.58 + t^7.62 + 3*t^7.69 + 2*t^7.73 + 4*t^7.74 + 2*t^7.78 + 8*t^7.89 + t^7.9 + 2*t^7.94 + t^8.01 + 13*t^8.05 + 4*t^8.17 - 3*t^8.21 + 2*t^8.26 + 9*t^8.37 - t^8.41 + 2*t^8.48 + 3*t^8.53 + 3*t^8.57 + 2*t^8.64 + 2*t^8.68 - t^8.73 + 2*t^8.8 + 8*t^8.84 + 3*t^8.89 + t^8.95 - t^8.96 - t^4.11/y - t^5.21/y - (2*t^6.32)/y - t^6.63/y - (2*t^6.79)/y - t^6.95/y - t^7.26/y + t^7.74/y + (3*t^7.89)/y + t^8.05/y + (2*t^8.21)/y + (3*t^8.37)/y - t^8.53/y + t^8.68/y + t^8.84/y - t^4.11*y - t^5.21*y - 2*t^6.32*y - t^6.63*y - 2*t^6.79*y - t^6.95*y - t^7.26*y + t^7.74*y + 3*t^7.89*y + t^8.05*y + 2*t^8.21*y + 3*t^8.37*y - t^8.53*y + t^8.68*y + t^8.84*y (2*g1^2*t^2.21)/g2^2 + (g2^14*t^2.53)/g1^14 + (2*g2^3*t^2.68)/g1^3 + (g1^8*t^2.84)/g2^8 + (g2^8*t^3.16)/g1^8 + (g2^13*t^3.63)/g1^13 + (g1^9*t^3.95)/g2^9 + (g2^7*t^4.26)/g1^7 + (4*g1^4*t^4.42)/g2^4 + (3*g2^12*t^4.74)/g1^12 + g1^7*g2^11*t^4.85 + (4*g2*t^4.89)/g1 + t^4.94/(g1^9*g2^9) + (3*g1^10*t^5.05)/g2^10 + (g2^28*t^5.05)/g1^28 + (2*g2^17*t^5.21)/g1^17 + (g2^7*t^5.25)/g1^25 + (6*g2^6*t^5.37)/g1^6 + g1^13*g2^5*t^5.48 + (2*g1^5*t^5.53)/g2^5 + (g2^22*t^5.68)/g1^22 + (4*g2^11*t^5.84)/g1^11 + g1^8*g2^10*t^5.95 - 3*t^6. + t^6.05/(g1^8*g2^10) + (2*g1^11*t^6.16)/g2^11 + (g2^27*t^6.16)/g1^27 + (2*g2^16*t^6.31)/g1^16 + (g2^6*t^6.36)/g1^24 + g1^3*g2^15*t^6.43 + (3*g2^5*t^6.47)/g1^5 + g1^14*g2^4*t^6.59 + (7*g1^6*t^6.63)/g2^6 + (2*g2^21*t^6.79)/g1^21 + (g1^9*t^6.84)/g2^27 + (8*g2^10*t^6.95)/g1^10 - t^6.99/g1^18 + 3*g1^9*g2^9*t^7.06 + (6*g1*t^7.11)/g2 + (3*t^7.15)/(g1^7*g2^11) - (g1^20*t^7.22)/g2^2 + (6*g1^12*t^7.26)/g2^12 + (4*g2^26*t^7.26)/g1^26 + (g2^25*t^7.37)/g1^7 + (5*g2^15*t^7.42)/g1^15 + (4*g2^5*t^7.47)/g1^23 + g1^4*g2^14*t^7.53 + (13*g2^4*t^7.58)/g1^4 + (g2^42*t^7.58)/g1^42 + t^7.62/(g1^12*g2^6) + 3*g1^15*g2^3*t^7.69 + (2*g2^31*t^7.73)/g1^31 + (4*g1^7*t^7.74)/g2^7 + (2*g2^21*t^7.78)/g1^39 + (8*g2^20*t^7.89)/g1^20 + (g1^18*t^7.9)/g2^18 + (2*g2^10*t^7.94)/g1^28 + (g2^19*t^8.01)/g1 + (13*g2^9*t^8.05)/g1^9 + 4*g1^10*g2^8*t^8.17 - (4*g1^2*t^8.21)/g2^2 + (g2^36*t^8.21)/g1^36 + (2*t^8.26)/(g1^6*g2^12) + (4*g1^13*t^8.37)/g2^13 + (5*g2^25*t^8.37)/g1^25 - (g1^5*t^8.41)/g2^23 + (2*g2^24*t^8.48)/g1^6 + (3*g2^14*t^8.53)/g1^14 + (3*g2^4*t^8.57)/g1^22 + 2*g1^5*g2^13*t^8.64 + (g2^3*t^8.68)/g1^3 + (g2^41*t^8.68)/g1^41 - t^8.73/(g1^11*g2^7) + 2*g1^16*g2^2*t^8.8 + (6*g1^8*t^8.84)/g2^8 + (2*g2^30*t^8.84)/g1^30 + t^8.89/g2^18 + (2*g2^20*t^8.89)/g1^38 + (g2^29*t^8.95)/g1^11 - (g1^27*t^8.96)/g2^9 - (g1*t^4.11)/(g2*y) - (g1^2*t^5.21)/(g2^2*y) - (2*g1^3*t^6.32)/(g2^3*y) - (g2^13*t^6.63)/(g1^13*y) - (2*g2^2*t^6.79)/(g1^2*y) - (g1^9*t^6.95)/(g2^9*y) - (g2^7*t^7.26)/(g1^7*y) + (g2^12*t^7.74)/(g1^12*y) + (3*g2*t^7.89)/(g1*y) + (g1^10*t^8.05)/(g2^10*y) + (2*g2^17*t^8.21)/(g1^17*y) + (3*g2^6*t^8.37)/(g1^6*y) - (g1^5*t^8.53)/(g2^5*y) + (g2^22*t^8.68)/(g1^22*y) + (g2^11*t^8.84)/(g1^11*y) - (g1*t^4.11*y)/g2 - (g1^2*t^5.21*y)/g2^2 - (2*g1^3*t^6.32*y)/g2^3 - (g2^13*t^6.63*y)/g1^13 - (2*g2^2*t^6.79*y)/g1^2 - (g1^9*t^6.95*y)/g2^9 - (g2^7*t^7.26*y)/g1^7 + (g2^12*t^7.74*y)/g1^12 + (3*g2*t^7.89*y)/g1 + (g1^10*t^8.05*y)/g2^10 + (2*g2^17*t^8.21*y)/g1^17 + (3*g2^6*t^8.37*y)/g1^6 - (g1^5*t^8.53*y)/g2^5 + (g2^22*t^8.68*y)/g1^22 + (g2^11*t^8.84*y)/g1^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57733 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4299 1.6663 0.8581 [X:[], M:[0.8964], q:[0.3877, 0.5019], qb:[0.5552, 0.348], phi:[0.3679]] 2*t^2.21 + t^2.55 + t^2.69 + t^2.83 + t^3.17 + t^3.31 + t^3.65 + t^3.93 + t^4.27 + 4*t^4.41 + 3*t^4.76 + t^4.86 + 2*t^4.9 + t^4.94 + 3*t^5.04 + t^5.1 + t^5.24 + t^5.28 + 4*t^5.38 + t^5.48 + 3*t^5.52 + t^5.72 + 4*t^5.86 + t^5.96 - 2*t^6. - t^4.1/y - t^5.21/y - t^4.1*y - t^5.21*y detail