Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58953 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{2}M_{7}$ + ${ }M_{5}M_{8}$ 0.665 0.8303 0.8008 [M:[1.2, 0.9844, 0.8, 0.8615, 0.677, 0.8, 1.0156, 1.323], q:[0.4307, 0.3693], qb:[0.5848, 0.7693], phi:[0.4615]] [M:[[0], [-6], [0], [-2], [4], [0], [6], [-4]], q:[[-1], [1]], qb:[[7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{7}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{8}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{7}q_{2}\tilde{q}_{1}$ ${}$ -1 2*t^2.4 + t^2.584 + t^2.769 + t^2.862 + t^3.047 + t^3.6 + t^3.784 + t^3.969 + t^4.062 + t^4.247 + t^4.431 + 3*t^4.8 + t^4.893 + 2*t^4.984 + 3*t^5.169 + 2*t^5.262 + 3*t^5.447 + 2*t^5.631 + t^5.724 + t^5.909 - t^6. + t^6.093 + t^6.184 + 3*t^6.369 + t^6.462 + t^6.553 + 3*t^6.647 + 3*t^6.831 - t^6.922 + t^6.924 + t^7.016 + 2*t^7.109 + 2*t^7.2 + 3*t^7.293 + t^7.384 + t^7.478 + 5*t^7.569 + 3*t^7.662 + 2*t^7.753 + t^7.756 + 4*t^7.847 + t^7.938 + t^7.94 + 4*t^8.031 - t^8.122 + 2*t^8.124 + t^8.216 + 3*t^8.309 - 3*t^8.4 + t^8.491 + 5*t^8.493 - 3*t^8.584 + t^8.587 + t^8.678 + t^8.769 + t^8.771 - t^8.862 + 2*t^8.953 + 2*t^8.956 - t^4.384/y - t^6.784/y - t^6.969/y - t^7.153/y + t^7.616/y + (2*t^7.8)/y + (3*t^7.984)/y + (2*t^8.169)/y + (2*t^8.262)/y + t^8.353/y + (3*t^8.447)/y + (2*t^8.631)/y + t^8.816/y + t^8.909/y - t^4.384*y - t^6.784*y - t^6.969*y - t^7.153*y + t^7.616*y + 2*t^7.8*y + 3*t^7.984*y + 2*t^8.169*y + 2*t^8.262*y + t^8.353*y + 3*t^8.447*y + 2*t^8.631*y + t^8.816*y + t^8.909*y 2*t^2.4 + t^2.584/g1^2 + t^2.769/g1^4 + g1^8*t^2.862 + g1^6*t^3.047 + t^3.6 + t^3.784/g1^2 + t^3.969/g1^4 + g1^8*t^4.062 + g1^6*t^4.247 + g1^4*t^4.431 + 3*t^4.8 + g1^12*t^4.893 + (2*t^4.984)/g1^2 + (3*t^5.169)/g1^4 + 2*g1^8*t^5.262 + 3*g1^6*t^5.447 + 2*g1^4*t^5.631 + g1^16*t^5.724 + g1^14*t^5.909 - t^6. + g1^12*t^6.093 + t^6.184/g1^2 + (3*t^6.369)/g1^4 + g1^8*t^6.462 + t^6.553/g1^6 + 3*g1^6*t^6.647 + 3*g1^4*t^6.831 - t^6.922/g1^10 + g1^16*t^6.924 + g1^2*t^7.016 + 2*g1^14*t^7.109 + 2*t^7.2 + 3*g1^12*t^7.293 + t^7.384/g1^2 + g1^10*t^7.478 + (5*t^7.569)/g1^4 + 3*g1^8*t^7.662 + (2*t^7.753)/g1^6 + g1^20*t^7.756 + 4*g1^6*t^7.847 + t^7.938/g1^8 + g1^18*t^7.94 + 4*g1^4*t^8.031 - t^8.122/g1^10 + 2*g1^16*t^8.124 + g1^2*t^8.216 + 3*g1^14*t^8.309 - 3*t^8.4 + t^8.491/g1^14 + 5*g1^12*t^8.493 - (3*t^8.584)/g1^2 + g1^24*t^8.587 + g1^10*t^8.678 + t^8.769/g1^4 + g1^22*t^8.771 - g1^8*t^8.862 + (2*t^8.953)/g1^6 + 2*g1^20*t^8.956 - t^4.384/(g1^2*y) - t^6.784/(g1^2*y) - t^6.969/(g1^4*y) - t^7.153/(g1^6*y) + (g1^2*t^7.616)/y + (2*t^7.8)/y + (3*t^7.984)/(g1^2*y) + (2*t^8.169)/(g1^4*y) + (2*g1^8*t^8.262)/y + t^8.353/(g1^6*y) + (3*g1^6*t^8.447)/y + (2*g1^4*t^8.631)/y + (g1^2*t^8.816)/y + (g1^14*t^8.909)/y - (t^4.384*y)/g1^2 - (t^6.784*y)/g1^2 - (t^6.969*y)/g1^4 - (t^7.153*y)/g1^6 + g1^2*t^7.616*y + 2*t^7.8*y + (3*t^7.984*y)/g1^2 + (2*t^8.169*y)/g1^4 + 2*g1^8*t^8.262*y + (t^8.353*y)/g1^6 + 3*g1^6*t^8.447*y + 2*g1^4*t^8.631*y + g1^2*t^8.816*y + g1^14*t^8.909*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57583 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{2}M_{7}$ 0.6858 0.8715 0.7869 [M:[1.2, 0.9859, 0.8, 0.862, 0.6761, 0.8, 1.0141], q:[0.431, 0.369], qb:[0.5831, 0.769], phi:[0.462]] t^2.028 + 2*t^2.4 + t^2.586 + t^2.772 + t^2.856 + t^3.042 + t^3.6 + t^3.786 + 2*t^4.056 + t^4.242 + 3*t^4.428 + t^4.614 + 4*t^4.8 + 2*t^4.885 + 2*t^4.986 + t^5.07 + 3*t^5.172 + 2*t^5.256 + 3*t^5.442 + 3*t^5.628 + t^5.713 + t^5.814 + t^5.899 - t^6. - t^4.386/y - t^4.386*y detail