Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58941 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{5}X_{1}$ + ${ }M_{7}\phi_{1}q_{1}q_{2}$ + ${ }M_{8}\phi_{1}^{2}$ | 0.6699 | 0.8446 | 0.7931 | [X:[1.3468], M:[1.1425, 1.1021, 0.8575, 0.6936, 0.6532, 0.8575, 0.6936, 1.1021], q:[0.3468, 0.5107], qb:[0.5511, 0.7957], phi:[0.4489]] | [X:[[3]], M:[[7], [-2], [-7], [6], [-3], [-7], [6], [-2]], q:[[3], [-10]], qb:[[-1], [4]], phi:[[1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{7}$, ${ }M_{3}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{8}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{8}$, ${ }M_{6}M_{8}$ | ${}$ | -3 | 2*t^2.081 + 2*t^2.572 + t^3.185 + 2*t^3.306 + t^3.428 + 2*t^4.04 + 3*t^4.162 + t^4.411 + t^4.532 + 4*t^4.653 + t^4.774 + 2*t^5.145 + 2*t^5.266 + 4*t^5.387 + t^5.508 + 2*t^5.758 + 3*t^5.879 - 3*t^6. + 4*t^6.121 + 4*t^6.242 + t^6.37 + 2*t^6.492 + 6*t^6.613 + 5*t^6.734 + t^6.855 + 2*t^6.983 + t^7.104 + 4*t^7.226 + 3*t^7.347 + 6*t^7.468 + t^7.589 + t^7.596 + 4*t^7.717 + 4*t^7.838 + 3*t^7.96 - 6*t^8.081 + 6*t^8.202 + 5*t^8.323 + 2*t^8.33 + 4*t^8.451 - 3*t^8.572 + 9*t^8.694 + 5*t^8.815 + t^8.822 + t^8.936 + 3*t^8.943 - t^4.347/y - (2*t^6.428)/y - t^6.919/y + t^7.04/y + t^7.162/y + (3*t^7.653)/y + t^7.774/y + t^8.145/y + (4*t^8.266)/y + (4*t^8.387)/y - t^8.508/y + (2*t^8.758)/y + (4*t^8.879)/y - t^4.347*y - 2*t^6.428*y - t^6.919*y + t^7.04*y + t^7.162*y + 3*t^7.653*y + t^7.774*y + t^8.145*y + 4*t^8.266*y + 4*t^8.387*y - t^8.508*y + 2*t^8.758*y + 4*t^8.879*y | 2*g1^6*t^2.081 + (2*t^2.572)/g1^7 + t^3.185/g1^11 + (2*t^3.306)/g1^2 + g1^7*t^3.428 + 2*g1^3*t^4.04 + 3*g1^12*t^4.162 + t^4.411/g1^19 + t^4.532/g1^10 + (4*t^4.653)/g1 + g1^8*t^4.774 + (2*t^5.145)/g1^14 + (2*t^5.266)/g1^5 + 4*g1^4*t^5.387 + g1^13*t^5.508 + (2*t^5.758)/g1^18 + (3*t^5.879)/g1^9 - 3*t^6. + 4*g1^9*t^6.121 + 4*g1^18*t^6.242 + t^6.37/g1^22 + (2*t^6.492)/g1^13 + (6*t^6.613)/g1^4 + 5*g1^5*t^6.734 + g1^14*t^6.855 + (2*t^6.983)/g1^26 + t^7.104/g1^17 + (4*t^7.226)/g1^8 + 3*g1*t^7.347 + 6*g1^10*t^7.468 + g1^19*t^7.589 + t^7.596/g1^30 + (4*t^7.717)/g1^21 + (4*t^7.838)/g1^12 + (3*t^7.96)/g1^3 - 6*g1^6*t^8.081 + 6*g1^15*t^8.202 + 5*g1^24*t^8.323 + (2*t^8.33)/g1^25 + (4*t^8.451)/g1^16 - (3*t^8.572)/g1^7 + 9*g1^2*t^8.694 + 5*g1^11*t^8.815 + t^8.822/g1^38 + g1^20*t^8.936 + (3*t^8.943)/g1^29 - (g1*t^4.347)/y - (2*g1^7*t^6.428)/y - t^6.919/(g1^6*y) + (g1^3*t^7.04)/y + (g1^12*t^7.162)/y + (3*t^7.653)/(g1*y) + (g1^8*t^7.774)/y + t^8.145/(g1^14*y) + (4*t^8.266)/(g1^5*y) + (4*g1^4*t^8.387)/y - (g1^13*t^8.508)/y + (2*t^8.758)/(g1^18*y) + (4*t^8.879)/(g1^9*y) - g1*t^4.347*y - 2*g1^7*t^6.428*y - (t^6.919*y)/g1^6 + g1^3*t^7.04*y + g1^12*t^7.162*y + (3*t^7.653*y)/g1 + g1^8*t^7.774*y + (t^8.145*y)/g1^14 + (4*t^8.266*y)/g1^5 + 4*g1^4*t^8.387*y - g1^13*t^8.508*y + (2*t^8.758*y)/g1^18 + (4*t^8.879*y)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57850 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{5}X_{1}$ + ${ }M_{7}\phi_{1}q_{1}q_{2}$ | 0.6792 | 0.8603 | 0.7896 | [X:[1.3447], M:[1.1377, 1.1035, 0.8623, 0.6895, 0.6553, 0.8623, 0.6895], q:[0.3447, 0.5175], qb:[0.5518, 0.793], phi:[0.4482]] | 2*t^2.068 + 2*t^2.587 + t^2.689 + t^3.208 + t^3.311 + t^3.413 + 2*t^4.034 + 3*t^4.137 + t^4.45 + t^4.553 + 4*t^4.655 + 3*t^4.758 + 2*t^5.174 + 4*t^5.276 + 3*t^5.379 + t^5.482 + 2*t^5.795 + 2*t^5.897 - 2*t^6. - t^4.345/y - t^4.345*y | detail |