Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58920 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{7}$ + ${ }M_{6}M_{8}$ 0.6322 0.7858 0.8045 [M:[1.2129, 0.8032, 0.7871, 0.8356, 0.7547, 0.8518, 1.1968, 1.1482], q:[0.4178, 0.3693], qb:[0.779, 0.7951], phi:[0.4097]] [M:[[-8], [-2], [8], [-22], [28], [-32], [2], [32]], q:[[-11], [19]], qb:[[13], [3]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{8}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{8}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{5}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.264 + t^2.361 + t^2.458 + t^2.507 + 2*t^3.445 + 2*t^3.59 + t^3.639 + t^4.528 + t^4.625 + t^4.674 + 3*t^4.722 + 2*t^4.819 + t^4.868 + t^4.965 + t^5.014 + 2*t^5.709 + 2*t^5.806 + t^5.854 + 4*t^5.903 + 3*t^5.951 - 3*t^6. + t^6.049 + 2*t^6.097 - t^6.146 + t^6.792 + 4*t^6.889 + t^6.938 + 2*t^6.986 + 4*t^7.035 + 2*t^7.084 - t^7.132 + 4*t^7.181 + 3*t^7.326 + t^7.472 + t^7.52 + 2*t^7.973 + 2*t^8.07 + 3*t^8.119 + 7*t^8.167 - t^8.216 + t^8.264 + 3*t^8.313 - 2*t^8.361 + 3*t^8.41 - 2*t^8.458 - 4*t^8.507 + t^8.555 - t^8.652 - t^4.229/y - t^6.493/y - t^6.687/y - t^6.736/y + t^7.625/y + (2*t^7.722)/y + (2*t^7.771)/y + t^7.819/y + t^7.868/y + (2*t^7.965)/y + (2*t^8.709)/y - t^8.757/y + (2*t^8.806)/y + (2*t^8.854)/y + (3*t^8.903)/y + (3*t^8.951)/y - t^4.229*y - t^6.493*y - t^6.687*y - t^6.736*y + t^7.625*y + 2*t^7.722*y + 2*t^7.771*y + t^7.819*y + t^7.868*y + 2*t^7.965*y + 2*t^8.709*y - t^8.757*y + 2*t^8.806*y + 2*t^8.854*y + 3*t^8.903*y + 3*t^8.951*y g1^28*t^2.264 + g1^8*t^2.361 + t^2.458/g1^12 + t^2.507/g1^22 + 2*g1^32*t^3.445 + 2*g1^2*t^3.59 + t^3.639/g1^8 + g1^56*t^4.528 + g1^36*t^4.625 + g1^26*t^4.674 + 3*g1^16*t^4.722 + (2*t^4.819)/g1^4 + t^4.868/g1^14 + t^4.965/g1^34 + t^5.014/g1^44 + 2*g1^60*t^5.709 + 2*g1^40*t^5.806 + g1^30*t^5.854 + 4*g1^20*t^5.903 + 3*g1^10*t^5.951 - 3*t^6. + t^6.049/g1^10 + (2*t^6.097)/g1^20 - t^6.146/g1^30 + g1^84*t^6.792 + 4*g1^64*t^6.889 + g1^54*t^6.938 + 2*g1^44*t^6.986 + 4*g1^34*t^7.035 + 2*g1^24*t^7.084 - g1^14*t^7.132 + 4*g1^4*t^7.181 + (3*t^7.326)/g1^26 + t^7.472/g1^56 + t^7.52/g1^66 + 2*g1^88*t^7.973 + 2*g1^68*t^8.07 + 3*g1^58*t^8.119 + 7*g1^48*t^8.167 - g1^38*t^8.216 + g1^28*t^8.264 + 3*g1^18*t^8.313 - 2*g1^8*t^8.361 + (3*t^8.41)/g1^2 - (2*t^8.458)/g1^12 - (4*t^8.507)/g1^22 + t^8.555/g1^32 - t^8.652/g1^52 - t^4.229/(g1^6*y) - (g1^22*t^6.493)/y - t^6.687/(g1^18*y) - t^6.736/(g1^28*y) + (g1^36*t^7.625)/y + (2*g1^16*t^7.722)/y + (2*g1^6*t^7.771)/y + t^7.819/(g1^4*y) + t^7.868/(g1^14*y) + (2*t^7.965)/(g1^34*y) + (2*g1^60*t^8.709)/y - (g1^50*t^8.757)/y + (2*g1^40*t^8.806)/y + (2*g1^30*t^8.854)/y + (3*g1^20*t^8.903)/y + (3*g1^10*t^8.951)/y - (t^4.229*y)/g1^6 - g1^22*t^6.493*y - (t^6.687*y)/g1^18 - (t^6.736*y)/g1^28 + g1^36*t^7.625*y + 2*g1^16*t^7.722*y + 2*g1^6*t^7.771*y + (t^7.819*y)/g1^4 + (t^7.868*y)/g1^14 + (2*t^7.965*y)/g1^34 + 2*g1^60*t^8.709*y - g1^50*t^8.757*y + 2*g1^40*t^8.806*y + 2*g1^30*t^8.854*y + 3*g1^20*t^8.903*y + 3*g1^10*t^8.951*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57670 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{7}$ 0.6467 0.8093 0.7991 [M:[1.2032, 0.8008, 0.7968, 0.8087, 0.789, 0.8126, 1.1992], q:[0.4043, 0.3925], qb:[0.7949, 0.7988], phi:[0.4024]] t^2.367 + t^2.391 + t^2.414 + t^2.426 + t^2.438 + t^3.562 + 2*t^3.598 + t^3.609 + t^4.734 + t^4.757 + t^4.769 + 3*t^4.781 + 3*t^4.805 + t^4.817 + t^4.828 + t^4.84 + 2*t^4.852 + t^4.864 + t^4.876 + t^5.929 + t^5.953 + t^5.964 + 3*t^5.976 + 2*t^5.988 - 2*t^6. - t^4.207/y - t^4.207*y detail