Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58891 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ | 1.1723 | 1.3863 | 0.8456 | [X:[1.6], M:[1.1748, 0.8], q:[0.5832, 0.2084], qb:[0.6168, 0.1916], phi:[0.4]] | [X:[[0, 0]], M:[[-1, 1], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}M_{2}\phi_{1}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | 3 | t^2.32 + 3*t^2.4 + 2*t^3.52 + 2*t^3.6 + t^3.68 + 2*t^4.2 + t^4.65 + 3*t^4.72 + 8*t^4.8 + 2*t^5.32 + 2*t^5.4 + 2*t^5.48 + 2*t^5.85 + 7*t^5.92 + 3*t^6. + 2*t^6.08 + 2*t^6.52 + 6*t^6.6 + t^6.97 + 6*t^7.05 + 9*t^7.12 + 16*t^7.2 - t^7.28 + t^7.35 + 2*t^7.65 + 8*t^7.72 + 4*t^7.8 + 4*t^7.88 + 2*t^8.17 + 7*t^8.25 + 14*t^8.32 + 4*t^8.4 + 3*t^8.48 + 6*t^8.85 + 8*t^8.92 - t^4.2/y - t^5.4/y - t^6.52/y - (2*t^6.6)/y + t^7.72/y + t^8.85/y + (5*t^8.92)/y - t^4.2*y - t^5.4*y - t^6.52*y - 2*t^6.6*y + t^7.72*y + t^8.85*y + 5*t^8.92*y | (g2*t^2.32)/g1 + 3*t^2.4 + (2*g2*t^3.52)/g1 + 2*t^3.6 + (g1*t^3.68)/g2 + t^4.2/(g1*g2^2) + g1*g2^2*t^4.2 + (g2^2*t^4.65)/g1^2 + (3*g2*t^4.72)/g1 + 8*t^4.8 + t^5.32/(g1^2*g2) + g2^3*t^5.32 + t^5.4/(g1*g2^2) + g1*g2^2*t^5.4 + t^5.48/g2^3 + g1^2*g2*t^5.48 + (2*g2^2*t^5.85)/g1^2 + (7*g2*t^5.92)/g1 + 3*t^6. + (2*g1*t^6.08)/g2 + t^6.52/(g1^2*g2) + g2^3*t^6.52 + (3*t^6.6)/(g1*g2^2) + 3*g1*g2^2*t^6.6 + (g2^3*t^6.97)/g1^3 + (6*g2^2*t^7.05)/g1^2 + (9*g2*t^7.12)/g1 + 16*t^7.2 - (g1*t^7.28)/g2 + (g1^2*t^7.35)/g2^2 + t^7.65/g1^3 + (g2^4*t^7.65)/g1 + (4*t^7.72)/(g1^2*g2) + 4*g2^3*t^7.72 + (2*t^7.8)/(g1*g2^2) + 2*g1*g2^2*t^7.8 + (2*t^7.88)/g2^3 + 2*g1^2*g2*t^7.88 + (2*g2^3*t^8.17)/g1^3 + (7*g2^2*t^8.25)/g1^2 + (14*g2*t^8.32)/g1 + 2*t^8.4 + t^8.4/(g1^2*g2^4) + g1^2*g2^4*t^8.4 + (3*g1*t^8.48)/g2 + (3*t^8.85)/g1^3 + (3*g2^4*t^8.85)/g1 + (4*t^8.92)/(g1^2*g2) + 4*g2^3*t^8.92 - t^4.2/y - t^5.4/y - (g2*t^6.52)/(g1*y) - (2*t^6.6)/y + (g2*t^7.72)/(g1*y) + (g2^2*t^8.85)/(g1^2*y) + (5*g2*t^8.92)/(g1*y) - t^4.2*y - t^5.4*y - (g2*t^6.52*y)/g1 - 2*t^6.6*y + (g2*t^7.72*y)/g1 + (g2^2*t^8.85*y)/g1^2 + (5*g2*t^8.92*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61023 | ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.1453 | 1.3593 | 0.8425 | [X:[1.6], M:[1.1748, 0.8], q:[0.5166, 0.1417], qb:[0.6834, 0.2583], phi:[0.4]] | t^2.32 + 3*t^2.4 + 2*t^3.52 + 3*t^3.6 + t^3.68 + t^4.65 + 4*t^4.72 + 10*t^4.8 + t^4.88 + 2*t^5.85 + 9*t^5.92 + 7*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57433 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ | 1.1558 | 1.3573 | 0.8515 | [X:[1.6], M:[1.1748], q:[0.5832, 0.2084], qb:[0.6168, 0.1916], phi:[0.4]] | t^2.324 + 2*t^2.4 + 2*t^3.524 + 3*t^3.6 + t^3.676 + 2*t^4.2 + t^4.649 + 2*t^4.724 + 5*t^4.8 + 2*t^5.324 + 2*t^5.4 + 2*t^5.476 + 2*t^5.849 + 6*t^5.924 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |