Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58891 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ 1.1723 1.3863 0.8456 [X:[1.6], M:[1.1748, 0.8], q:[0.5832, 0.2084], qb:[0.6168, 0.1916], phi:[0.4]] [X:[[0, 0]], M:[[-1, 1], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}M_{2}\phi_{1}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ 3 t^2.32 + 3*t^2.4 + 2*t^3.52 + 2*t^3.6 + t^3.68 + 2*t^4.2 + t^4.65 + 3*t^4.72 + 8*t^4.8 + 2*t^5.32 + 2*t^5.4 + 2*t^5.48 + 2*t^5.85 + 7*t^5.92 + 3*t^6. + 2*t^6.08 + 2*t^6.52 + 6*t^6.6 + t^6.97 + 6*t^7.05 + 9*t^7.12 + 16*t^7.2 - t^7.28 + t^7.35 + 2*t^7.65 + 8*t^7.72 + 4*t^7.8 + 4*t^7.88 + 2*t^8.17 + 7*t^8.25 + 14*t^8.32 + 4*t^8.4 + 3*t^8.48 + 6*t^8.85 + 8*t^8.92 - t^4.2/y - t^5.4/y - t^6.52/y - (2*t^6.6)/y + t^7.72/y + t^8.85/y + (5*t^8.92)/y - t^4.2*y - t^5.4*y - t^6.52*y - 2*t^6.6*y + t^7.72*y + t^8.85*y + 5*t^8.92*y (g2*t^2.32)/g1 + 3*t^2.4 + (2*g2*t^3.52)/g1 + 2*t^3.6 + (g1*t^3.68)/g2 + t^4.2/(g1*g2^2) + g1*g2^2*t^4.2 + (g2^2*t^4.65)/g1^2 + (3*g2*t^4.72)/g1 + 8*t^4.8 + t^5.32/(g1^2*g2) + g2^3*t^5.32 + t^5.4/(g1*g2^2) + g1*g2^2*t^5.4 + t^5.48/g2^3 + g1^2*g2*t^5.48 + (2*g2^2*t^5.85)/g1^2 + (7*g2*t^5.92)/g1 + 3*t^6. + (2*g1*t^6.08)/g2 + t^6.52/(g1^2*g2) + g2^3*t^6.52 + (3*t^6.6)/(g1*g2^2) + 3*g1*g2^2*t^6.6 + (g2^3*t^6.97)/g1^3 + (6*g2^2*t^7.05)/g1^2 + (9*g2*t^7.12)/g1 + 16*t^7.2 - (g1*t^7.28)/g2 + (g1^2*t^7.35)/g2^2 + t^7.65/g1^3 + (g2^4*t^7.65)/g1 + (4*t^7.72)/(g1^2*g2) + 4*g2^3*t^7.72 + (2*t^7.8)/(g1*g2^2) + 2*g1*g2^2*t^7.8 + (2*t^7.88)/g2^3 + 2*g1^2*g2*t^7.88 + (2*g2^3*t^8.17)/g1^3 + (7*g2^2*t^8.25)/g1^2 + (14*g2*t^8.32)/g1 + 2*t^8.4 + t^8.4/(g1^2*g2^4) + g1^2*g2^4*t^8.4 + (3*g1*t^8.48)/g2 + (3*t^8.85)/g1^3 + (3*g2^4*t^8.85)/g1 + (4*t^8.92)/(g1^2*g2) + 4*g2^3*t^8.92 - t^4.2/y - t^5.4/y - (g2*t^6.52)/(g1*y) - (2*t^6.6)/y + (g2*t^7.72)/(g1*y) + (g2^2*t^8.85)/(g1^2*y) + (5*g2*t^8.92)/(g1*y) - t^4.2*y - t^5.4*y - (g2*t^6.52*y)/g1 - 2*t^6.6*y + (g2*t^7.72*y)/g1 + (g2^2*t^8.85*y)/g1^2 + (5*g2*t^8.92*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61023 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.1453 1.3593 0.8425 [X:[1.6], M:[1.1748, 0.8], q:[0.5166, 0.1417], qb:[0.6834, 0.2583], phi:[0.4]] t^2.32 + 3*t^2.4 + 2*t^3.52 + 3*t^3.6 + t^3.68 + t^4.65 + 4*t^4.72 + 10*t^4.8 + t^4.88 + 2*t^5.85 + 9*t^5.92 + 7*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57433 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.1558 1.3573 0.8515 [X:[1.6], M:[1.1748], q:[0.5832, 0.2084], qb:[0.6168, 0.1916], phi:[0.4]] t^2.324 + 2*t^2.4 + 2*t^3.524 + 3*t^3.6 + t^3.676 + 2*t^4.2 + t^4.649 + 2*t^4.724 + 5*t^4.8 + 2*t^5.324 + 2*t^5.4 + 2*t^5.476 + 2*t^5.849 + 6*t^5.924 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail