Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58880 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }M_{2}\phi_{1}^{2}q_{1}\tilde{q}_{2}$ 1.1789 1.3978 0.8433 [X:[1.5935], M:[1.187, 0.7806], q:[0.2257, 0.535], qb:[0.6196, 0.1808], phi:[0.4065]] [X:[[0, 1]], M:[[0, 2], [0, 3]], q:[[-1, -1], [-1, 13]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{2}\phi_{1}^{3}$ -2 t^2.15 + t^2.34 + t^2.44 + t^2.54 + t^3.37 + t^3.46 + t^3.56 + t^3.66 + t^3.76 + t^4.16 + t^4.18 + t^4.29 + t^4.49 + 2*t^4.59 + 2*t^4.68 + 2*t^4.78 + 2*t^4.88 + 2*t^4.97 + t^5.11 + t^5.29 + t^5.38 + t^5.4 + t^5.48 + t^5.51 + t^5.61 + t^5.69 + 2*t^5.71 + 3*t^5.81 + 4*t^5.9 - 2*t^6. + 3*t^6.1 + 2*t^6.19 + t^6.31 + 2*t^6.33 - t^6.42 + t^6.44 + t^6.5 + t^6.52 + 2*t^6.6 + 2*t^6.62 + t^6.64 + t^6.7 + 3*t^6.73 - t^6.8 + 3*t^6.83 + 3*t^6.93 + 6*t^7.03 + 6*t^7.12 + t^7.22 + t^7.25 + 4*t^7.32 + 3*t^7.41 + t^7.43 + t^7.45 + t^7.51 + 2*t^7.53 + 3*t^7.55 + t^7.63 + t^7.66 + t^7.72 + t^7.76 + 3*t^7.82 + 2*t^7.84 + 2*t^7.86 + 2*t^7.92 + t^7.93 + 4*t^7.95 - t^8.02 - t^8.03 + 6*t^8.05 + t^8.13 + t^8.23 + 8*t^8.24 + t^8.33 + 4*t^8.34 + t^8.36 - t^8.44 + t^8.46 + 4*t^8.47 - t^8.57 + t^8.59 + 3*t^8.63 + 2*t^8.65 + 2*t^8.67 + t^8.73 + 4*t^8.75 + 3*t^8.76 + t^8.78 - t^8.83 + 2*t^8.85 + t^8.86 + 3*t^8.88 + t^8.94 + 3*t^8.98 - t^4.22/y - t^5.44/y - t^6.37/y - t^6.56/y - t^6.76/y + t^7.49/y + t^8.61/y + t^8.71/y + (2*t^8.81)/y + (3*t^8.9)/y - t^4.22*y - t^5.44*y - t^6.37*y - t^6.56*y - t^6.76*y + t^7.49*y + t^8.61*y + t^8.71*y + 2*t^8.81*y + 3*t^8.9*y g2^13*t^2.15 + g2^3*t^2.34 + t^2.44/g2^2 + t^2.54/g2^7 + g2^12*t^3.37 + g2^7*t^3.46 + g2^2*t^3.56 + t^3.66/g2^3 + t^3.76/g2^8 + (g1^3*t^4.16)/g2^7 + (g2^10*t^4.18)/g1^3 + g2^26*t^4.29 + g2^16*t^4.49 + 2*g2^11*t^4.59 + 2*g2^6*t^4.68 + 2*g2*t^4.78 + (2*t^4.88)/g2^4 + (2*t^4.97)/g2^9 + (g2^24*t^5.11)/g1^3 + (g1^3*t^5.29)/g2^3 + (g1^3*t^5.38)/g2^8 + (g2^9*t^5.4)/g1^3 + (g1^3*t^5.48)/g2^13 + g2^25*t^5.51 + g2^20*t^5.61 + t^5.69/(g1^3*g2^6) + 2*g2^15*t^5.71 + 3*g2^10*t^5.81 + 4*g2^5*t^5.9 - 2*t^6. + (3*t^6.1)/g2^5 + (2*t^6.19)/g2^10 + g1^3*g2^6*t^6.31 + (2*g2^23*t^6.33)/g1^3 - (g2^18*t^6.42)/g1^3 + g2^39*t^6.44 + (g1^3*t^6.5)/g2^4 + (g2^13*t^6.52)/g1^3 + (2*g1^3*t^6.6)/g2^9 + (2*g2^8*t^6.62)/g1^3 + g2^29*t^6.64 + (g1^3*t^6.7)/g2^14 + 3*g2^24*t^6.73 - (g1^3*t^6.8)/g2^19 + 3*g2^19*t^6.83 + 3*g2^14*t^6.93 + 6*g2^9*t^7.03 + 6*g2^4*t^7.12 + t^7.22/g2 + (g2^37*t^7.25)/g1^3 + (4*t^7.32)/g2^6 + (3*t^7.41)/g2^11 + g1^3*g2^10*t^7.43 + (g2^27*t^7.45)/g1^3 + t^7.51/g2^16 + 2*g1^3*g2^5*t^7.53 + (3*g2^22*t^7.55)/g1^3 + g1^3*t^7.63 + g2^38*t^7.66 + (g1^3*t^7.72)/g2^5 + g2^33*t^7.76 + (3*g1^3*t^7.82)/g2^10 + (2*g2^7*t^7.84)/g1^3 + 2*g2^28*t^7.86 + (2*g1^3*t^7.92)/g2^15 + (g2^2*t^7.93)/g1^3 + 4*g2^23*t^7.95 - (g1^3*t^8.02)/g2^20 - t^8.03/(g1^3*g2^3) + 6*g2^18*t^8.05 + t^8.13/(g1^3*g2^8) + t^8.23/(g1^3*g2^13) + 8*g2^8*t^8.24 + (g1^6*t^8.33)/g2^14 + 4*g2^3*t^8.34 + (g2^20*t^8.36)/g1^6 - t^8.44/g2^2 + g1^3*g2^19*t^8.46 + (4*g2^36*t^8.47)/g1^3 - (g2^31*t^8.57)/g1^3 + g2^52*t^8.59 + (3*t^8.63)/g2^12 + 2*g1^3*g2^9*t^8.65 + (2*g2^26*t^8.67)/g1^3 + t^8.73/g2^17 + 4*g1^3*g2^4*t^8.75 + (3*g2^21*t^8.76)/g1^3 + g2^42*t^8.78 - t^8.83/g2^22 + (2*g1^3*t^8.85)/g2 + (g2^16*t^8.86)/g1^3 + 3*g2^37*t^8.88 + (g1^3*t^8.94)/g2^6 + 3*g2^32*t^8.98 - t^4.22/(g2*y) - t^5.44/(g2^2*y) - (g2^12*t^6.37)/y - (g2^2*t^6.56)/y - t^6.76/(g2^8*y) + (g2^16*t^7.49)/y + (g2^20*t^8.61)/y + (g2^15*t^8.71)/y + (2*g2^10*t^8.81)/y + (3*g2^5*t^8.9)/y - (t^4.22*y)/g2 - (t^5.44*y)/g2^2 - g2^12*t^6.37*y - g2^2*t^6.56*y - (t^6.76*y)/g2^8 + g2^16*t^7.49*y + g2^20*t^8.61*y + g2^15*t^8.71*y + 2*g2^10*t^8.81*y + 3*g2^5*t^8.9*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61050 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }M_{2}\phi_{1}^{2}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ 1.1946 1.4249 0.8383 [X:[1.5939], M:[1.1878, 0.7816, 0.8122], q:[0.2242, 0.5385], qb:[0.6186, 0.1819], phi:[0.4061]] t^2.16 + t^2.34 + 2*t^2.44 + t^2.53 + t^3.38 + t^3.47 + t^3.66 + t^3.75 + t^4.17 + t^4.18 + t^4.32 + t^4.51 + 3*t^4.6 + 2*t^4.69 + 3*t^4.78 + 4*t^4.87 + 3*t^4.97 + t^5.12 + t^5.29 + t^5.38 + t^5.4 + t^5.48 + t^5.54 + t^5.63 + t^5.67 + t^5.72 + 4*t^5.82 + 4*t^5.91 - 3*t^6. - t^4.22/y - t^5.44/y - t^4.22*y - t^5.44*y detail
60962 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }M_{2}\phi_{1}^{2}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{3}q_{1}^{3}$ 1.175 1.3971 0.841 [X:[1.5903], M:[1.1807, 0.771], q:[0.257, 0.5219], qb:[0.6106, 0.1526], phi:[0.4097]] t^2.02 + t^2.31 + t^2.46 + t^2.6 + t^3.25 + t^3.4 + t^3.54 + t^3.69 + t^3.83 + t^3.98 + t^4.05 + 2*t^4.34 + 2*t^4.48 + 2*t^4.63 + 2*t^4.77 + 2*t^4.92 + 3*t^5.06 + t^5.13 + t^5.21 + t^5.28 + t^5.35 + t^5.42 + 3*t^5.57 + 3*t^5.71 + 4*t^5.86 - t^4.23/y - t^5.46/y - t^4.23*y - t^5.46*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57728 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.1613 1.3662 0.85 [X:[1.594], M:[1.1879], q:[0.2239, 0.5394], qb:[0.6183, 0.1822], phi:[0.406]] t^2.16 + t^2.44 + t^2.53 + t^3.38 + t^3.47 + t^3.56 + 2*t^3.65 + t^3.74 + t^4.17 + t^4.18 + t^4.33 + 2*t^4.6 + t^4.69 + t^4.78 + t^4.87 + 2*t^4.96 + t^5.13 + t^5.29 + t^5.38 + t^5.4 + t^5.47 + t^5.55 + t^5.64 + t^5.67 + t^5.73 + 3*t^5.82 + 3*t^5.91 - 3*t^6. - t^4.22/y - t^5.44/y - t^4.22*y - t^5.44*y detail