Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58873 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{5}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.2979 1.5354 0.8453 [X:[1.4], M:[0.8], q:[0.6273, 0.3455], qb:[0.3727, 0.2545], phi:[0.4]] [X:[[0]], M:[[0]], q:[[1], [-2]], qb:[[-1], [2]], phi:[[0]]] 1 {a: 45687/35200, c: 54047/35200, X1: 7/5, M1: 4/5, q1: 69/110, q2: 19/55, qb1: 41/110, qb2: 14/55, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ ${3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 2 t^2.15 + 2*t^2.4 + t^2.65 + 2*t^3. + t^3.35 + 2*t^3.85 + 4*t^4.2 + t^4.31 + 3*t^4.55 + 4*t^4.8 + 4*t^5.05 + 2*t^5.15 + t^5.29 + 6*t^5.4 + t^5.51 + t^5.65 + 2*t^5.75 + t^5.89 + 2*t^6. + 5*t^6.25 + 5*t^6.35 + t^6.46 + 2*t^6.49 + 8*t^6.6 + 5*t^6.71 + 4*t^6.85 + 6*t^6.95 + 13*t^7.2 + 2*t^7.31 + 6*t^7.45 + 10*t^7.55 + t^7.66 + 6*t^7.69 + 7*t^7.8 + 3*t^7.91 + t^7.94 + 10*t^8.05 + 2*t^8.15 + 2*t^8.29 + 16*t^8.4 + 4*t^8.51 + t^8.54 + t^8.62 + 5*t^8.65 + 12*t^8.75 + 5*t^8.86 + 9*t^8.89 - t^4.2/y - t^5.4/y - t^6.35/y - (2*t^6.6)/y - t^6.85/y - t^7.2/y + t^7.55/y + t^7.8/y + t^8.05/y + (2*t^8.15)/y + t^8.4/y + (2*t^8.65)/y - t^8.75/y - t^4.2*y - t^5.4*y - t^6.35*y - 2*t^6.6*y - t^6.85*y - t^7.2*y + t^7.55*y + t^7.8*y + t^8.05*y + 2*t^8.15*y + t^8.4*y + 2*t^8.65*y - t^8.75*y t^2.15/g1^3 + 2*t^2.4 + g1^3*t^2.65 + 2*t^3. + t^3.35/g1^3 + 2*g1^3*t^3.85 + 4*t^4.2 + t^4.31/g1^6 + (3*t^4.55)/g1^3 + 4*t^4.8 + 4*g1^3*t^5.05 + (2*t^5.15)/g1^3 + g1^6*t^5.29 + 6*t^5.4 + t^5.51/g1^6 + g1^3*t^5.65 + (2*t^5.75)/g1^3 + g1^6*t^5.89 + 2*t^6. + 5*g1^3*t^6.25 + (5*t^6.35)/g1^3 + t^6.46/g1^9 + 2*g1^6*t^6.49 + 8*t^6.6 + (5*t^6.71)/g1^6 + 4*g1^3*t^6.85 + (6*t^6.95)/g1^3 + 13*t^7.2 + (2*t^7.31)/g1^6 + 6*g1^3*t^7.45 + (10*t^7.55)/g1^3 + t^7.66/g1^9 + 6*g1^6*t^7.69 + 7*t^7.8 + (3*t^7.91)/g1^6 + g1^9*t^7.94 + 10*g1^3*t^8.05 + (2*t^8.15)/g1^3 + 2*g1^6*t^8.29 + 16*t^8.4 + (4*t^8.51)/g1^6 + g1^9*t^8.54 + t^8.62/g1^12 + 5*g1^3*t^8.65 + (12*t^8.75)/g1^3 + (5*t^8.86)/g1^9 + 9*g1^6*t^8.89 - t^4.2/y - t^5.4/y - t^6.35/(g1^3*y) - (2*t^6.6)/y - (g1^3*t^6.85)/y - t^7.2/y + t^7.55/(g1^3*y) + t^7.8/y + (g1^3*t^8.05)/y + (2*t^8.15)/(g1^3*y) + t^8.4/y + (2*g1^3*t^8.65)/y - t^8.75/(g1^3*y) - t^4.2*y - t^5.4*y - (t^6.35*y)/g1^3 - 2*t^6.6*y - g1^3*t^6.85*y - t^7.2*y + (t^7.55*y)/g1^3 + t^7.8*y + g1^3*t^8.05*y + (2*t^8.15*y)/g1^3 + t^8.4*y + 2*g1^3*t^8.65*y - (t^8.75*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57410 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{5}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.3463 1.5838 0.85 [X:[1.4], M:[0.8], q:[0.5, 0.3], qb:[0.5, 0.3], phi:[0.4]] 4*t^2.4 + 2*t^3. + 2*t^3.6 + 3*t^4.2 + 2*t^4.5 + 12*t^4.8 + 2*t^5.1 + 7*t^5.4 + 2*t^5.7 + 7*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 1077/800, c: 1267/800, X1: 7/5, M1: 4/5, q1: 1/2, q2: 3/10, qb1: 1/2, qb2: 3/10, phi1: 2/5}