Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58814 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ 1.156 1.3793 0.8382 [X:[1.5714], M:[1.1429], q:[0.5604, 0.2912], qb:[0.4396, 0.1374], phi:[0.4286]] [X:[[0]], M:[[0]], q:[[2], [-1]], qb:[[-2], [1]], phi:[[0]]] 1 {a: 659811/570752, c: 787211/570752, X1: 11/7, M1: 8/7, q1: 51/91, q2: 53/182, qb1: 40/91, qb2: 25/182, phi1: 3/7}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ ${2}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 0 t^2.09 + t^2.19 + t^2.57 + t^3. + t^3.38 + 2*t^3.43 + t^3.48 + 2*t^3.86 + t^4.19 + 2*t^4.29 + t^4.34 + t^4.38 + 2*t^4.66 + 3*t^4.71 + 2*t^4.76 + t^5.09 + t^5.14 + t^5.47 + 3*t^5.52 + 4*t^5.57 + 3*t^5.62 + t^5.67 + 3*t^5.95 + 2*t^6.05 + t^6.28 + 2*t^6.38 + 4*t^6.43 + 3*t^6.48 + t^6.53 + t^6.58 + 3*t^6.76 + 4*t^6.81 + 7*t^6.86 + 4*t^6.91 + 3*t^6.96 + t^7.19 + t^7.24 + 4*t^7.29 + 3*t^7.34 + t^7.57 + 3*t^7.62 + 5*t^7.66 + 10*t^7.71 + 5*t^7.76 + 5*t^7.81 + t^7.86 + 4*t^8.04 + 3*t^8.09 + 7*t^8.14 + 3*t^8.19 + 2*t^8.24 + t^8.37 + 2*t^8.47 + 4*t^8.52 + 5*t^8.57 + 3*t^8.62 + 3*t^8.67 + t^8.72 + t^8.77 + 3*t^8.85 + 6*t^8.9 + 10*t^8.95 - t^4.29/y - t^5.57/y - t^6.38/y - t^6.48/y + t^8.09/y - (2*t^8.14)/y + t^8.19/y + (2*t^8.52)/y + (2*t^8.57)/y + (2*t^8.62)/y + (2*t^8.95)/y - t^4.29*y - t^5.57*y - t^6.38*y - t^6.48*y + t^8.09*y - 2*t^8.14*y + t^8.19*y + 2*t^8.52*y + 2*t^8.57*y + 2*t^8.62*y + 2*t^8.95*y g1^3*t^2.09 + t^2.19/g1^3 + t^2.57 + t^3. + g1^3*t^3.38 + 2*t^3.43 + t^3.48/g1^3 + 2*t^3.86 + g1^6*t^4.19 + 2*t^4.29 + t^4.34/g1^3 + t^4.38/g1^6 + 2*g1^3*t^4.66 + 3*t^4.71 + (2*t^4.76)/g1^3 + g1^3*t^5.09 + t^5.14 + g1^6*t^5.47 + 3*g1^3*t^5.52 + 4*t^5.57 + (3*t^5.62)/g1^3 + t^5.67/g1^6 + 3*g1^3*t^5.95 + (2*t^6.05)/g1^3 + g1^9*t^6.28 + 2*g1^3*t^6.38 + 4*t^6.43 + (3*t^6.48)/g1^3 + t^6.53/g1^6 + t^6.58/g1^9 + 3*g1^6*t^6.76 + 4*g1^3*t^6.81 + 7*t^6.86 + (4*t^6.91)/g1^3 + (3*t^6.96)/g1^6 + g1^6*t^7.19 + g1^3*t^7.24 + 4*t^7.29 + (3*t^7.34)/g1^3 + g1^9*t^7.57 + 3*g1^6*t^7.62 + 5*g1^3*t^7.66 + 10*t^7.71 + (5*t^7.76)/g1^3 + (5*t^7.81)/g1^6 + t^7.86/g1^9 + 4*g1^6*t^8.04 + 3*g1^3*t^8.09 + 7*t^8.14 + (3*t^8.19)/g1^3 + (2*t^8.24)/g1^6 + g1^12*t^8.37 + 2*g1^6*t^8.47 + 4*g1^3*t^8.52 + 5*t^8.57 + (3*t^8.62)/g1^3 + (3*t^8.67)/g1^6 + t^8.72/g1^9 + t^8.77/g1^12 + 3*g1^9*t^8.85 + 6*g1^6*t^8.9 + 10*g1^3*t^8.95 - t^4.29/y - t^5.57/y - (g1^3*t^6.38)/y - t^6.48/(g1^3*y) + (g1^3*t^8.09)/y - (2*t^8.14)/y + t^8.19/(g1^3*y) + (2*g1^3*t^8.52)/y + (2*t^8.57)/y + (2*t^8.62)/(g1^3*y) + (2*g1^3*t^8.95)/y - t^4.29*y - t^5.57*y - g1^3*t^6.38*y - (t^6.48*y)/g1^3 + g1^3*t^8.09*y - 2*t^8.14*y + (t^8.19*y)/g1^3 + 2*g1^3*t^8.52*y + 2*t^8.57*y + (2*t^8.62*y)/g1^3 + 2*g1^3*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57469 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.1888 1.412 0.8419 [X:[1.5714], M:[1.1429], q:[0.5, 0.2143], qb:[0.5, 0.2143], phi:[0.4286]] 2*t^2.14 + t^2.57 + t^3. + 3*t^3.43 + 2*t^3.86 + 2*t^4.07 + 4*t^4.29 + 5*t^4.71 + 2*t^4.93 + t^5.14 + 2*t^5.36 + 8*t^5.57 + 2*t^5.79 + 3*t^6. - t^4.29/y - t^5.57/y - t^4.29*y - t^5.57*y detail {a: 26097/21952, c: 30997/21952, X1: 11/7, M1: 8/7, q1: 1/2, q2: 3/14, qb1: 1/2, qb2: 3/14, phi1: 3/7}