Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58811 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.0055 1.2242 0.8213 [X:[1.5226, 1.5, 1.5, 1.4774], M:[0.9774, 0.7613, 0.7613], q:[0.2387, 0.2613], qb:[0.2387, 0.2613], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[0, 0, 1], [3, 2, 1], [-3, -2, -2]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$ ${}\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ -1 2*t^2.28 + 2*t^2.93 + 3*t^3. + 2*t^3.78 + 2*t^4.43 + 5*t^4.5 + 5*t^4.57 + 6*t^5.22 + 8*t^5.28 + 3*t^5.86 + 3*t^5.93 - t^6. + t^6.07 + 2*t^6.65 + 4*t^6.72 + 12*t^6.78 + 10*t^6.85 + 4*t^7.36 + 12*t^7.43 + 21*t^7.5 + 18*t^7.57 + 4*t^8.15 + 4*t^8.22 - 2*t^8.28 - 2*t^8.35 + 4*t^8.8 + 6*t^8.86 - 2*t^8.93 - t^4.5/y - t^6./y - (2*t^6.78)/y - t^7.43/y + t^7.5/y + (2*t^7.57)/y + (6*t^8.22)/y + (4*t^8.28)/y + t^8.86/y + (3*t^8.93)/y - t^4.5*y - t^6.*y - 2*t^6.78*y - t^7.43*y + t^7.5*y + 2*t^7.57*y + 6*t^8.22*y + 4*t^8.28*y + t^8.86*y + 3*t^8.93*y t^2.28/(g1^3*g2^2*g3^2) + g1^3*g2^2*g3*t^2.28 + 2*g3*t^2.93 + t^3. + t^3./g2 + g2*t^3. + t^3.78/(g1^3*g2*g3^2) + g1^3*g2*g3*t^3.78 + 2*g3*t^4.43 + t^4.5 + (2*t^4.5)/g2 + 2*g2*t^4.5 + t^4.57/(g1^6*g2^4*g3^4) + (3*t^4.57)/g3 + g1^6*g2^4*g3^2*t^4.57 + (3*t^5.22)/(g1^3*g2^2*g3) + 3*g1^3*g2^2*g3^2*t^5.22 + t^5.28/(g1^3*g2^3*g3^2) + t^5.28/(g1^3*g2^2*g3^2) + (2*t^5.28)/(g1^3*g2*g3^2) + 2*g1^3*g2*g3*t^5.28 + g1^3*g2^2*g3*t^5.28 + g1^3*g2^3*g3*t^5.28 + 3*g3^2*t^5.86 + g3*t^5.93 + (g3*t^5.93)/g2 + g2*g3*t^5.93 - 3*t^6. + t^6./g2^2 + g2^2*t^6. + t^6.07/(g1^6*g2^3*g3^4) - t^6.07/g3 + g1^6*g2^3*g3^2*t^6.07 + t^6.65/(g1^3*g2^3) + g1^3*g2^3*g3^3*t^6.65 + (2*t^6.72)/(g1^3*g2^2*g3) + 2*g1^3*g2^2*g3^2*t^6.72 + t^6.78/(g1^3*g3^2) + (2*t^6.78)/(g1^3*g2^3*g3^2) + (3*t^6.78)/(g1^3*g2*g3^2) + g1^3*g3*t^6.78 + 3*g1^3*g2*g3*t^6.78 + 2*g1^3*g2^3*g3*t^6.78 + g1^3*t^6.85 + 3*g1^3*g2^2*t^6.85 + t^6.85/(g1^9*g2^6*g3^6) + t^6.85/(g1^3*g3^3) + (3*t^6.85)/(g1^3*g2^2*g3^3) + g1^9*g2^6*g3^3*t^6.85 + 4*g3^2*t^7.36 + 2*g3*t^7.43 + (5*g3*t^7.43)/g2 + 5*g2*g3*t^7.43 + 9*t^7.5 + (2*t^7.5)/g2^2 + t^7.5/g2 + g2*t^7.5 + 2*g2^2*t^7.5 + (3*t^7.5)/(g1^6*g2^4*g3^3) + 3*g1^6*g2^4*g3^3*t^7.5 + t^7.57/(g1^6*g2^5*g3^4) + t^7.57/(g1^6*g2^4*g3^4) + (2*t^7.57)/(g1^6*g2^3*g3^4) + t^7.57/(g1^6*g2^2*g3^4) + (2*t^7.57)/g3 + (3*t^7.57)/(g2*g3) + (3*g2*t^7.57)/g3 + g1^6*g2^2*g3^2*t^7.57 + 2*g1^6*g2^3*g3^2*t^7.57 + g1^6*g2^4*g3^2*t^7.57 + g1^6*g2^5*g3^2*t^7.57 - t^8.15/(g1^3*g2^3) + (3*t^8.15)/(g1^3*g2^2) + 3*g1^3*g2^2*g3^3*t^8.15 - g1^3*g2^3*g3^3*t^8.15 + (2*t^8.22)/(g1^3*g2*g3) + 2*g1^3*g2*g3^2*t^8.22 + (2*t^8.28)/(g1^3*g3^2) + t^8.28/(g1^3*g2^4*g3^2) - (4*t^8.28)/(g1^3*g2^2*g3^2) + 2*g1^3*g3*t^8.28 - 4*g1^3*g2^2*g3*t^8.28 + g1^3*g2^4*g3*t^8.28 - g1^3*t^8.35 - g1^3*g2^2*t^8.35 + t^8.35/(g1^9*g2^5*g3^6) - t^8.35/(g1^3*g3^3) - t^8.35/(g1^3*g2^2*g3^3) + g1^9*g2^5*g3^3*t^8.35 + 4*g3^3*t^8.8 + 4*g3^2*t^8.86 + (g3^2*t^8.86)/g2 + g2*g3^2*t^8.86 + t^8.93/(g1^6*g2^5*g3^2) - 10*g3*t^8.93 + (g3*t^8.93)/g2^2 + (2*g3*t^8.93)/g2 + 2*g2*g3*t^8.93 + g2^2*g3*t^8.93 + g1^6*g2^5*g3^4*t^8.93 - t^4.5/y - t^6./y - t^6.78/(g1^3*g2^2*g3^2*y) - (g1^3*g2^2*g3*t^6.78)/y - (g3*t^7.43)/y + t^7.5/y + (2*t^7.57)/(g3*y) + (3*t^8.22)/(g1^3*g2^2*g3*y) + (3*g1^3*g2^2*g3^2*t^8.22)/y + t^8.28/(g1^3*g2^3*g3^2*y) + t^8.28/(g1^3*g2*g3^2*y) + (g1^3*g2*g3*t^8.28)/y + (g1^3*g2^3*g3*t^8.28)/y + (g3^2*t^8.86)/y - (g3*t^8.93)/y + (2*g3*t^8.93)/(g2*y) + (2*g2*g3*t^8.93)/y - t^4.5*y - t^6.*y - (t^6.78*y)/(g1^3*g2^2*g3^2) - g1^3*g2^2*g3*t^6.78*y - g3*t^7.43*y + t^7.5*y + (2*t^7.57*y)/g3 + (3*t^8.22*y)/(g1^3*g2^2*g3) + 3*g1^3*g2^2*g3^2*t^8.22*y + (t^8.28*y)/(g1^3*g2^3*g3^2) + (t^8.28*y)/(g1^3*g2*g3^2) + g1^3*g2*g3*t^8.28*y + g1^3*g2^3*g3*t^8.28*y + g3^2*t^8.86*y - g3*t^8.93*y + (2*g3*t^8.93*y)/g2 + 2*g2*g3*t^8.93*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61193 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}q_{1}q_{2}^{2}$ 1.0253 1.2616 0.8127 [X:[1.5285, 1.4917, 1.5083, 1.4715], M:[0.9715, 0.7559, 0.7725, 0.7192], q:[0.2358, 0.2725], qb:[0.2358, 0.2559], phi:[0.5]] t^2.16 + t^2.27 + t^2.32 + 2*t^2.91 + t^2.98 + t^3. + t^3.02 + t^3.74 + t^4.32 + 2*t^4.41 + t^4.43 + 3*t^4.48 + t^4.5 + 2*t^4.52 + t^4.54 + 3*t^4.59 + t^4.64 + 2*t^5.07 + t^5.13 + t^5.16 + 4*t^5.18 + 3*t^5.23 + 2*t^5.24 + t^5.27 + 2*t^5.29 + t^5.32 + 2*t^5.34 + 3*t^5.83 + t^5.89 + t^5.9 + t^5.91 + t^5.94 + t^5.95 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57512 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$ 0.9877 1.1935 0.8275 [X:[1.535, 1.5082, 1.4918, 1.465], M:[0.965, 0.7415], q:[0.2439, 0.2706], qb:[0.2211, 0.2643], phi:[0.5]] t^2.22 + 2*t^2.9 + t^2.98 + t^3. + t^3.02 + t^3.62 + t^3.75 + t^3.86 + 2*t^4.4 + t^4.45 + 2*t^4.48 + t^4.5 + 2*t^4.52 + 2*t^4.6 + 3*t^5.12 + t^5.2 + t^5.22 + 2*t^5.25 + t^5.28 + t^5.36 + 3*t^5.79 + t^5.84 + t^5.87 + t^5.9 + t^5.92 + t^5.95 + t^5.97 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail