Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58765 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ 1.3614 1.5868 0.8579 [X:[1.3724], M:[1.0, 0.7447], q:[0.3138, 0.5691], qb:[0.3138, 0.5691], phi:[0.3724]] [X:[[0, 1]], M:[[0, 0], [0, 2]], q:[[-1, -3], [-1, -5]], qb:[[1, 2], [1, 0]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{1}\tilde{q}_{2}$ 1 2*t^2.23 + 2*t^2.65 + t^3. + t^3.35 + t^3.41 + t^3.77 + 2*t^4.12 + 3*t^4.47 + t^4.53 + 2*t^4.71 + 6*t^4.88 + 3*t^5.3 + 2*t^5.47 + 2*t^5.59 + 5*t^5.65 + 2*t^5.82 + t^6. + 2*t^6.06 + 2*t^6.18 + 3*t^6.35 + 3*t^6.41 + 2*t^6.59 + 5*t^6.7 + 5*t^6.77 + t^6.83 + 4*t^6.94 + 10*t^7.12 + 3*t^7.18 - 2*t^7.29 + 4*t^7.36 - t^7.47 + 11*t^7.53 + 6*t^7.71 + 3*t^7.82 + 7*t^7.88 + 5*t^7.95 + 6*t^8.12 + 2*t^8.23 + 11*t^8.3 + 2*t^8.41 + 6*t^8.47 + 3*t^8.59 + 3*t^8.65 + 3*t^8.71 + 6*t^8.82 + 2*t^8.89 + 7*t^8.94 - t^4.12/y - t^5.23/y - (2*t^6.35)/y - (2*t^6.77)/y - (2*t^7.47)/y - t^7.53/y + (4*t^7.88)/y + t^8.3/y - (2*t^8.59)/y + (3*t^8.65)/y - t^4.12*y - t^5.23*y - 2*t^6.35*y - 2*t^6.77*y - 2*t^7.47*y - t^7.53*y + 4*t^7.88*y + t^8.3*y - 2*t^8.59*y + 3*t^8.65*y 2*g2^2*t^2.23 + (2*t^2.65)/g2^3 + t^3. + g2^3*t^3.35 + t^3.41/g2^5 + t^3.77/g2^2 + 2*g2*t^4.12 + 3*g2^4*t^4.47 + t^4.53/g2^4 + t^4.71/(g1^3*g2^10) + g1^3*g2^5*t^4.71 + (6*t^4.88)/g2 + (3*t^5.3)/g2^6 + t^5.47/(g1^3*g2^12) + g1^3*g2^3*t^5.47 + 2*g2^5*t^5.59 + (5*t^5.65)/g2^3 + t^5.82/(g1^3*g2^9) + g1^3*g2^6*t^5.82 + t^6. + (2*t^6.06)/g2^8 + t^6.18/(g1^3*g2^6) + g1^3*g2^9*t^6.18 + 3*g2^3*t^6.35 + (3*t^6.41)/g2^5 + t^6.59/(g1^3*g2^11) + g1^3*g2^4*t^6.59 + 5*g2^6*t^6.7 + (5*t^6.77)/g2^2 + t^6.83/g2^10 + (2*t^6.94)/(g1^3*g2^8) + 2*g1^3*g2^7*t^6.94 + 10*g2*t^7.12 + (3*t^7.18)/g2^7 - t^7.29/(g1^3*g2^5) - g1^3*g2^10*t^7.29 + (2*t^7.36)/(g1^3*g2^13) + 2*g1^3*g2^2*t^7.36 - g2^4*t^7.47 + (11*t^7.53)/g2^4 + (3*t^7.71)/(g1^3*g2^10) + 3*g1^3*g2^5*t^7.71 + 3*g2^7*t^7.82 + (7*t^7.88)/g2 + (5*t^7.95)/g2^9 + 3*g1^3*t^8.12 + (3*t^8.12)/(g1^3*g2^15) + 2*g2^2*t^8.23 + (11*t^8.3)/g2^6 + t^8.41/(g1^3*g2^4) + g1^3*g2^11*t^8.41 + (3*t^8.47)/(g1^3*g2^12) + 3*g1^3*g2^3*t^8.47 + 3*g2^5*t^8.59 + (3*t^8.65)/g2^3 + (3*t^8.71)/g2^11 + (3*t^8.82)/(g1^3*g2^9) + 3*g1^3*g2^6*t^8.82 + t^8.89/(g1^3*g2^17) + (g1^3*t^8.89)/g2^2 + 7*g2^8*t^8.94 - (g2*t^4.12)/y - (g2^2*t^5.23)/y - (2*g2^3*t^6.35)/y - (2*t^6.77)/(g2^2*y) - (2*g2^4*t^7.47)/y - t^7.53/(g2^4*y) + (4*t^7.88)/(g2*y) + t^8.3/(g2^6*y) - (2*g2^5*t^8.59)/y + (3*t^8.65)/(g2^3*y) - g2*t^4.12*y - g2^2*t^5.23*y - 2*g2^3*t^6.35*y - (2*t^6.77*y)/g2^2 - 2*g2^4*t^7.47*y - (t^7.53*y)/g2^4 + (4*t^7.88*y)/g2 + (t^8.3*y)/g2^6 - 2*g2^5*t^8.59*y + (3*t^8.65*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57634 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5159 1.7675 0.8577 [X:[], M:[0.6731, 0.6745], q:[0.4948, 0.4934], qb:[0.4948, 0.4934], phi:[0.3372]] 3*t^2.02 + 3*t^2.96 + t^2.97 + t^3.04 + t^3.97 + t^3.98 + 3*t^4.04 + 3*t^4.05 + 6*t^4.98 + 10*t^4.99 + t^5.05 + 2*t^5.06 + 4*t^5.46 + t^5.92 + 8*t^5.93 + t^5.94 + t^5.99 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail