Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58739 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{3}q_{1}^{3}$ 1.1569 1.3646 0.8478 [X:[1.5906], M:[1.1811], q:[0.2572, 0.5251], qb:[0.6088, 0.1522], phi:[0.4094]] [X:[[1]], M:[[2]], q:[[1], [15]], qb:[[-8], [-2]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ -1 t^2.03 + t^2.46 + t^2.6 + t^3.26 + t^3.4 + t^3.54 + 2*t^3.68 + t^3.83 + t^3.97 + t^4.06 + t^4.35 + 2*t^4.49 + t^4.63 + t^4.77 + t^4.91 + 3*t^5.05 + t^5.15 + t^5.2 + t^5.29 + t^5.34 + t^5.43 + 2*t^5.58 + 3*t^5.72 + 3*t^5.86 - t^6. + t^6.1 + 3*t^6.14 + 3*t^6.28 + 2*t^6.38 + 2*t^6.42 + 2*t^6.52 + t^6.57 + 2*t^6.66 - t^6.71 + 3*t^6.8 + 5*t^6.95 + 6*t^7.09 + t^7.18 + 2*t^7.23 + t^7.32 + 4*t^7.37 + t^7.47 + 4*t^7.51 + 4*t^7.61 + 4*t^7.65 + 4*t^7.75 + 2*t^7.79 + 3*t^7.89 + t^8.03 + t^8.13 + 7*t^8.17 + 6*t^8.32 + 4*t^8.41 + 2*t^8.46 + 2*t^8.55 + t^8.6 + 3*t^8.69 + 5*t^8.74 + 6*t^8.84 + 5*t^8.88 + 7*t^8.98 - t^4.23/y - t^5.46/y - t^6.26/y - t^6.83/y - (2*t^7.91)/y + t^8.43/y + t^8.58/y + (2*t^8.72)/y + (3*t^8.86)/y - t^4.23*y - t^5.46*y - t^6.26*y - t^6.83*y - 2*t^7.91*y + t^8.43*y + t^8.58*y + 2*t^8.72*y + 3*t^8.86*y g1^13*t^2.03 + t^2.46/g1^2 + t^2.6/g1^7 + g1^12*t^3.26 + g1^7*t^3.4 + g1^2*t^3.54 + (2*t^3.68)/g1^3 + t^3.83/g1^8 + t^3.97/g1^13 + g1^26*t^4.06 + g1^16*t^4.35 + 2*g1^11*t^4.49 + g1^6*t^4.63 + g1*t^4.77 + t^4.91/g1^4 + (3*t^5.05)/g1^9 + g1^30*t^5.15 + t^5.2/g1^14 + g1^25*t^5.29 + t^5.34/g1^19 + g1^20*t^5.43 + 2*g1^15*t^5.58 + 3*g1^10*t^5.72 + 3*g1^5*t^5.86 - t^6. + g1^39*t^6.1 + (3*t^6.14)/g1^5 + (3*t^6.28)/g1^10 + 2*g1^29*t^6.38 + (2*t^6.42)/g1^15 + 2*g1^24*t^6.52 + t^6.57/g1^20 + 2*g1^19*t^6.66 - t^6.71/g1^25 + 3*g1^14*t^6.8 + 5*g1^9*t^6.95 + 6*g1^4*t^7.09 + g1^43*t^7.18 + (2*t^7.23)/g1 + g1^38*t^7.32 + (4*t^7.37)/g1^6 + g1^33*t^7.47 + (4*t^7.51)/g1^11 + 4*g1^28*t^7.61 + (4*t^7.65)/g1^16 + 4*g1^23*t^7.75 + (2*t^7.79)/g1^21 + 3*g1^18*t^7.89 + g1^13*t^8.03 + g1^52*t^8.13 + 7*g1^8*t^8.17 + 6*g1^3*t^8.32 + 4*g1^42*t^8.41 + (2*t^8.46)/g1^2 + 2*g1^37*t^8.55 + t^8.6/g1^7 + 3*g1^32*t^8.69 + (5*t^8.74)/g1^12 + 6*g1^27*t^8.84 + (5*t^8.88)/g1^17 + 7*g1^22*t^8.98 - t^4.23/(g1*y) - t^5.46/(g1^2*y) - (g1^12*t^6.26)/y - t^6.83/(g1^8*y) - (2*t^7.91)/(g1^4*y) + (g1^20*t^8.43)/y + (g1^15*t^8.58)/y + (2*g1^10*t^8.72)/y + (3*g1^5*t^8.86)/y - (t^4.23*y)/g1 - (t^5.46*y)/g1^2 - g1^12*t^6.26*y - (t^6.83*y)/g1^8 - (2*t^7.91*y)/g1^4 + g1^20*t^8.43*y + g1^15*t^8.58*y + 2*g1^10*t^8.72*y + 3*g1^5*t^8.86*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57728 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.1613 1.3662 0.85 [X:[1.594], M:[1.1879], q:[0.2239, 0.5394], qb:[0.6183, 0.1822], phi:[0.406]] t^2.16 + t^2.44 + t^2.53 + t^3.38 + t^3.47 + t^3.56 + 2*t^3.65 + t^3.74 + t^4.17 + t^4.18 + t^4.33 + 2*t^4.6 + t^4.69 + t^4.78 + t^4.87 + 2*t^4.96 + t^5.13 + t^5.29 + t^5.38 + t^5.4 + t^5.47 + t^5.55 + t^5.64 + t^5.67 + t^5.73 + 3*t^5.82 + 3*t^5.91 - 3*t^6. - t^4.22/y - t^5.44/y - t^4.22*y - t^5.44*y detail