Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5867 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}M_{5}$ + ${ }M_{5}M_{7}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{9}$ 0.6466 0.8094 0.7988 [M:[0.8761, 1.0367, 1.0505, 0.8028, 1.1239, 1.1972, 0.8761, 0.7156, 1.1239], q:[0.7592, 0.3647], qb:[0.4381, 0.5114], phi:[0.4817]] [M:[[14], [12], [-38], [-10], [-14], [10], [14], [16], [-14]], q:[[3], [-17]], qb:[[7], [31]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{8}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{9}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{8}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{8}$, ${ }M_{2}M_{4}$, ${ }M_{8}M_{9}$, ${ }M_{2}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{9}$, ${ }M_{8}\phi_{1}q_{2}^{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$ ${}M_{7}M_{9}$ -1 t^2.147 + t^2.408 + t^2.628 + t^3.11 + t^3.151 + t^3.372 + t^3.592 + t^3.633 + t^3.812 + 2*t^4.073 + 2*t^4.293 + t^4.514 + t^4.555 + t^4.775 + t^4.817 + t^5.037 + 2*t^5.257 + t^5.298 + 2*t^5.518 + 2*t^5.738 + t^5.78 + t^5.959 - t^6. + t^6.041 + 2*t^6.22 + t^6.262 + t^6.303 + 2*t^6.44 + t^6.482 + t^6.523 + t^6.66 + 3*t^6.702 + t^6.743 + t^6.785 + 3*t^6.922 + t^6.963 + t^7.142 + 2*t^7.183 + t^7.225 + t^7.266 + 3*t^7.404 + 2*t^7.445 + t^7.624 + 3*t^7.665 + t^7.707 + 4*t^7.885 + t^7.927 + 2*t^8.105 + t^8.147 + t^8.325 + 3*t^8.367 - t^8.408 + 2*t^8.45 + 4*t^8.587 - t^8.628 + t^8.67 + 2*t^8.807 + 2*t^8.849 + t^8.89 + t^8.931 - t^4.445/y - t^6.592/y + t^7.293/y + t^7.555/y - t^7.596/y + t^7.775/y + t^8.037/y + t^8.257/y + (2*t^8.298)/y + (2*t^8.518)/y + t^8.56/y + t^8.738/y + (3*t^8.78)/y + t^8.959/y - t^4.445*y - t^6.592*y + t^7.293*y + t^7.555*y - t^7.596*y + t^7.775*y + t^8.037*y + t^8.257*y + 2*t^8.298*y + 2*t^8.518*y + t^8.56*y + t^8.738*y + 3*t^8.78*y + t^8.959*y g1^16*t^2.147 + t^2.408/g1^10 + g1^14*t^2.628 + g1^12*t^3.11 + t^3.151/g1^38 + t^3.372/g1^14 + g1^10*t^3.592 + t^3.633/g1^40 + g1^34*t^3.812 + 2*g1^8*t^4.073 + 2*g1^32*t^4.293 + g1^56*t^4.514 + g1^6*t^4.555 + g1^30*t^4.775 + t^4.817/g1^20 + g1^4*t^5.037 + 2*g1^28*t^5.257 + t^5.298/g1^22 + 2*g1^2*t^5.518 + 2*g1^26*t^5.738 + t^5.78/g1^24 + g1^50*t^5.959 - t^6. + t^6.041/g1^50 + 2*g1^24*t^6.22 + t^6.262/g1^26 + t^6.303/g1^76 + 2*g1^48*t^6.44 + t^6.482/g1^2 + t^6.523/g1^52 + g1^72*t^6.66 + 3*g1^22*t^6.702 + t^6.743/g1^28 + t^6.785/g1^78 + 3*g1^46*t^6.922 + t^6.963/g1^4 + g1^70*t^7.142 + 2*g1^20*t^7.183 + t^7.225/g1^30 + t^7.266/g1^80 + 3*g1^44*t^7.404 + (2*t^7.445)/g1^6 + g1^68*t^7.624 + 3*g1^18*t^7.665 + t^7.707/g1^32 + 4*g1^42*t^7.885 + t^7.927/g1^8 + 2*g1^66*t^8.105 + g1^16*t^8.147 + g1^90*t^8.325 + 3*g1^40*t^8.367 - t^8.408/g1^10 + (2*t^8.45)/g1^60 + 4*g1^64*t^8.587 - g1^14*t^8.628 + t^8.67/g1^36 + 2*g1^88*t^8.807 + 2*g1^38*t^8.849 + t^8.89/g1^12 + t^8.931/g1^62 - t^4.445/(g1^6*y) - (g1^10*t^6.592)/y + (g1^32*t^7.293)/y + (g1^6*t^7.555)/y - t^7.596/(g1^44*y) + (g1^30*t^7.775)/y + (g1^4*t^8.037)/y + (g1^28*t^8.257)/y + (2*t^8.298)/(g1^22*y) + (2*g1^2*t^8.518)/y + t^8.56/(g1^48*y) + (g1^26*t^8.738)/y + (3*t^8.78)/(g1^24*y) + (g1^50*t^8.959)/y - (t^4.445*y)/g1^6 - g1^10*t^6.592*y + g1^32*t^7.293*y + g1^6*t^7.555*y - (t^7.596*y)/g1^44 + g1^30*t^7.775*y + g1^4*t^8.037*y + g1^28*t^8.257*y + (2*t^8.298*y)/g1^22 + 2*g1^2*t^8.518*y + (t^8.56*y)/g1^48 + g1^26*t^8.738*y + (3*t^8.78*y)/g1^24 + g1^50*t^8.959*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4384 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}M_{5}$ + ${ }M_{5}M_{7}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6579 0.8295 0.7932 [M:[0.8696, 1.0311, 1.0682, 0.8074, 1.1304, 1.1926, 0.8696, 0.7081], q:[0.7578, 0.3726], qb:[0.4348, 0.497], phi:[0.4844]] t^2.124 + t^2.422 + 2*t^2.609 + t^3.093 + t^3.205 + t^3.578 + t^3.689 + t^3.764 + 2*t^4.062 + 2*t^4.249 + t^4.435 + t^4.547 + 2*t^4.733 + t^4.844 + 2*t^5.031 + 4*t^5.218 + t^5.329 + t^5.516 + 3*t^5.702 + t^5.813 + t^5.889 - 2*t^6. - t^4.453/y - t^4.453*y detail