Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5864 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}M_{8}$ + ${ }M_{2}M_{7}$ + ${ }M_{4}M_{9}$ 0.7015 0.8716 0.8048 [M:[0.7143, 1.1429, 1.0, 1.0086, 0.7057, 0.9914, 0.8571, 1.0086, 0.9914], q:[0.6343, 0.6514], qb:[0.3571, 0.6429], phi:[0.4286]] [M:[[0], [0], [0], [1], [-1], [-1], [0], [1], [-1]], q:[[-1], [1]], qb:[[0], [0]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{1}$, ${ }M_{7}$, ${ }M_{9}$, ${ }M_{3}$, ${ }M_{8}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{7}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{9}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{7}M_{9}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{9}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$ ${}M_{8}M_{9}$ -1 t^2.117 + t^2.143 + t^2.571 + t^2.974 + t^3. + t^3.026 + t^3.429 + t^3.831 + t^4.234 + 2*t^4.26 + 2*t^4.286 + t^4.311 + t^4.689 + t^4.714 + 2*t^5.091 + 2*t^5.117 + 4*t^5.143 + t^5.169 + t^5.194 + 2*t^5.546 + 2*t^5.571 + t^5.597 + t^5.949 - t^6. - t^6.026 + t^6.351 + 2*t^6.377 + 4*t^6.403 + 3*t^6.429 + t^6.454 + 2*t^6.806 + 2*t^6.831 + t^6.857 + 2*t^7.209 + 3*t^7.234 + 5*t^7.26 + 3*t^7.286 + t^7.311 + t^7.337 + 4*t^7.663 + 3*t^7.689 + 5*t^7.714 + t^7.74 + t^7.766 + 2*t^8.066 + 2*t^8.091 + t^8.117 - t^8.143 + t^8.194 + t^8.22 + t^8.469 + 2*t^8.494 + 4*t^8.52 + 3*t^8.546 + t^8.571 - t^8.597 + 3*t^8.923 + 2*t^8.949 - t^4.286/y - t^6.403/y - t^6.429/y - t^6.857/y + t^7.26/y + t^7.689/y + (2*t^7.714)/y + t^8.091/y + (2*t^8.117)/y + (3*t^8.143)/y + (2*t^8.169)/y - t^8.52/y + t^8.546/y + t^8.571/y + t^8.597/y + t^8.949/y + t^8.974/y - t^4.286*y - t^6.403*y - t^6.429*y - t^6.857*y + t^7.26*y + t^7.689*y + 2*t^7.714*y + t^8.091*y + 2*t^8.117*y + 3*t^8.143*y + 2*t^8.169*y - t^8.52*y + t^8.546*y + t^8.571*y + t^8.597*y + t^8.949*y + t^8.974*y t^2.117/g1 + t^2.143 + t^2.571 + t^2.974/g1 + t^3. + g1*t^3.026 + t^3.429 + t^3.831/g1 + t^4.234/g1^2 + (2*t^4.26)/g1 + 2*t^4.286 + g1*t^4.311 + t^4.689/g1 + t^4.714 + (2*t^5.091)/g1^2 + (2*t^5.117)/g1 + 4*t^5.143 + g1*t^5.169 + g1^2*t^5.194 + (2*t^5.546)/g1 + 2*t^5.571 + g1*t^5.597 + t^5.949/g1^2 - t^6. - g1*t^6.026 + t^6.351/g1^3 + (2*t^6.377)/g1^2 + (4*t^6.403)/g1 + 3*t^6.429 + g1*t^6.454 + (2*t^6.806)/g1^2 + (2*t^6.831)/g1 + t^6.857 + (2*t^7.209)/g1^3 + (3*t^7.234)/g1^2 + (5*t^7.26)/g1 + 3*t^7.286 + g1*t^7.311 + g1^2*t^7.337 + (4*t^7.663)/g1^2 + (3*t^7.689)/g1 + 5*t^7.714 + g1*t^7.74 + g1^2*t^7.766 + (2*t^8.066)/g1^3 + (2*t^8.091)/g1^2 + t^8.117/g1 - t^8.143 + g1^2*t^8.194 + g1^3*t^8.22 + t^8.469/g1^4 + (2*t^8.494)/g1^3 + (4*t^8.52)/g1^2 + (3*t^8.546)/g1 + t^8.571 - g1*t^8.597 + (3*t^8.923)/g1^3 + (2*t^8.949)/g1^2 - t^4.286/y - t^6.403/(g1*y) - t^6.429/y - t^6.857/y + t^7.26/(g1*y) + t^7.689/(g1*y) + (2*t^7.714)/y + t^8.091/(g1^2*y) + (2*t^8.117)/(g1*y) + (3*t^8.143)/y + (2*g1*t^8.169)/y - t^8.52/(g1^2*y) + t^8.546/(g1*y) + t^8.571/y + (g1*t^8.597)/y + t^8.949/(g1^2*y) + t^8.974/(g1*y) - t^4.286*y - (t^6.403*y)/g1 - t^6.429*y - t^6.857*y + (t^7.26*y)/g1 + (t^7.689*y)/g1 + 2*t^7.714*y + (t^8.091*y)/g1^2 + (2*t^8.117*y)/g1 + 3*t^8.143*y + 2*g1*t^8.169*y - (t^8.52*y)/g1^2 + (t^8.546*y)/g1 + t^8.571*y + g1*t^8.597*y + (t^8.949*y)/g1^2 + (t^8.974*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4386 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}^{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}M_{8}$ + ${ }M_{2}M_{7}$ 0.7022 0.8718 0.8054 [M:[0.7143, 1.1429, 1.0, 0.9762, 0.7381, 1.0238, 0.8571, 0.9762], q:[0.6667, 0.619], qb:[0.3571, 0.6429], phi:[0.4286]] t^2.143 + t^2.214 + t^2.571 + 2*t^2.929 + t^3. + t^3.429 + t^3.929 + t^4.214 + 2*t^4.286 + 2*t^4.357 + t^4.429 + t^4.714 + t^4.786 + t^5. + 2*t^5.071 + 5*t^5.143 + t^5.214 + t^5.286 + 2*t^5.5 + 2*t^5.571 + t^5.643 + 2*t^5.857 - 2*t^6. - t^4.286/y - t^4.286*y detail {a: 1101/1568, c: 1367/1568, M1: 5/7, M2: 8/7, M3: 1, M4: 41/42, M5: 31/42, M6: 43/42, M7: 6/7, M8: 41/42, q1: 2/3, q2: 13/21, qb1: 5/14, qb2: 9/14, phi1: 3/7}