Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58630 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4616 1.7238 0.8479 [X:[], M:[0.8558, 0.7628], q:[0.3814, 0.4744], qb:[0.3814, 0.4744], phi:[0.3814]] [X:[], M:[[-3, 3], [2, -2]], q:[[-3, -2], [-8, 3]], qb:[[5, 0], [0, 5]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 4 3*t^2.29 + 3*t^2.57 + t^2.85 + t^3.43 + t^3.71 + t^3.99 + 7*t^4.58 + 13*t^4.86 + 12*t^5.13 + 3*t^5.41 + t^5.69 + t^5.72 + 4*t^6. + 7*t^6.28 + 4*t^6.56 + t^6.84 + 14*t^6.87 + 30*t^7.14 + 43*t^7.42 + 34*t^7.7 + 13*t^7.98 - 3*t^8.01 + 3*t^8.26 - t^8.29 + t^8.54 + 9*t^8.57 + 19*t^8.85 - t^4.14/y - t^5.29/y - (3*t^6.43)/y - (3*t^6.71)/y - t^6.99/y + (8*t^7.86)/y + (5*t^8.13)/y + (3*t^8.41)/y - (4*t^8.72)/y - t^4.14*y - t^5.29*y - 3*t^6.43*y - 3*t^6.71*y - t^6.99*y + 8*t^7.86*y + 5*t^8.13*y + 3*t^8.41*y - 4*t^8.72*y (3*g1^2*t^2.29)/g2^2 + (3*g2^3*t^2.57)/g1^3 + (g2^8*t^2.85)/g1^8 + (g1^3*t^3.43)/g2^3 + (g2^2*t^3.71)/g1^2 + (g2^7*t^3.99)/g1^7 + (7*g1^4*t^4.58)/g2^4 + t^4.86/(g1^13*g2^2) + (11*g2*t^4.86)/g1 + g1^11*g2^4*t^4.86 + (g2^3*t^5.13)/g1^18 + (10*g2^6*t^5.13)/g1^6 + g1^6*g2^9*t^5.13 + (3*g2^11*t^5.41)/g1^11 + (g2^16*t^5.69)/g1^16 + (g1^5*t^5.72)/g2^5 + 2*t^6. + t^6./(g1^12*g2^3) + g1^12*g2^3*t^6. + (g2^2*t^6.28)/g1^17 + (5*g2^5*t^6.28)/g1^5 + g1^7*g2^8*t^6.28 + (4*g2^10*t^6.56)/g1^10 + (g2^15*t^6.84)/g1^15 + t^6.87/(g1^6*g2^9) + (12*g1^6*t^6.87)/g2^6 + (g1^18*t^6.87)/g2^3 + (3*t^7.14)/(g1^11*g2^4) + (24*g1*t^7.14)/g2 + 3*g1^13*g2^2*t^7.14 + (6*g2*t^7.42)/g1^16 + (31*g2^4*t^7.42)/g1^4 + 6*g1^8*g2^7*t^7.42 + (5*g2^6*t^7.7)/g1^21 + (24*g2^9*t^7.7)/g1^9 + 5*g1^3*g2^12*t^7.7 + (g2^11*t^7.98)/g1^26 + (11*g2^14*t^7.98)/g1^14 + (g2^17*t^7.98)/g1^2 - t^8.01/(g1^5*g2^10) - (g1^7*t^8.01)/g2^7 - (g1^19*t^8.01)/g2^4 + (3*g2^19*t^8.26)/g1^19 + t^8.29/(g1^10*g2^5) - (3*g1^2*t^8.29)/g2^2 + g1^14*g2*t^8.29 + (g2^24*t^8.54)/g1^24 + (3*t^8.57)/g1^15 + (3*g2^3*t^8.57)/g1^3 + 3*g1^9*g2^6*t^8.57 + (3*g2^5*t^8.85)/g1^20 + (13*g2^8*t^8.85)/g1^8 + 3*g1^4*g2^11*t^8.85 - (g1*t^4.14)/(g2*y) - (g1^2*t^5.29)/(g2^2*y) - (3*g1^3*t^6.43)/(g2^3*y) - (3*g2^2*t^6.71)/(g1^2*y) - (g2^7*t^6.99)/(g1^7*y) + (8*g2*t^7.86)/(g1*y) + (5*g2^6*t^8.13)/(g1^6*y) + (3*g2^11*t^8.41)/(g1^11*y) - (4*g1^5*t^8.72)/(g2^5*y) - (g1*t^4.14*y)/g2 - (g1^2*t^5.29*y)/g2^2 - (3*g1^3*t^6.43*y)/g2^3 - (3*g2^2*t^6.71*y)/g1^2 - (g2^7*t^6.99*y)/g1^7 + (8*g2*t^7.86*y)/g1 + (5*g2^6*t^8.13*y)/g1^6 + (3*g2^11*t^8.41*y)/g1^11 - (4*g1^5*t^8.72*y)/g2^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57634 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5159 1.7675 0.8577 [X:[], M:[0.6731, 0.6745], q:[0.4948, 0.4934], qb:[0.4948, 0.4934], phi:[0.3372]] 3*t^2.02 + 3*t^2.96 + t^2.97 + t^3.04 + t^3.97 + t^3.98 + 3*t^4.04 + 3*t^4.05 + 6*t^4.98 + 10*t^4.99 + t^5.05 + 2*t^5.06 + 4*t^5.46 + t^5.92 + 8*t^5.93 + t^5.94 + t^5.99 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail