Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58616 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.477 | 1.7554 | 0.8414 | [X:[], M:[0.6862, 0.8488, 0.8488], q:[0.465, 0.3837], qb:[0.465, 0.3837], phi:[0.3837]] | [X:[], M:[[7, 0, 7], [-3, 0, -3], [-3, 0, -3]], q:[[-8, -1, -8], [2, 0, 0]], qb:[[0, 1, 0], [0, 0, 2]], phi:[[1, 0, 1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$ | ${}\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 2 | t^2.06 + 2*t^2.3 + 4*t^2.55 + t^2.79 + 2*t^3.7 + t^4.12 + 2*t^4.36 + 8*t^4.6 + 13*t^4.85 + 15*t^5.09 + 4*t^5.34 + t^5.58 + 2*t^6. + t^6.18 + 8*t^6.24 + 2*t^6.42 + 2*t^6.49 + 8*t^6.66 + 19*t^6.91 + 35*t^7.15 + 48*t^7.4 + 46*t^7.64 + 15*t^7.88 - 6*t^8.06 + 4*t^8.13 + t^8.23 - 5*t^8.3 + t^8.37 + 2*t^8.48 + t^8.55 + 8*t^8.72 + 21*t^8.79 + 19*t^8.97 - t^4.15/y - t^5.3/y - t^6.21/y - (2*t^6.45)/y - (4*t^6.7)/y - t^6.94/y + t^7.36/y + (4*t^7.6)/y + (6*t^7.85)/y + (8*t^8.09)/y - t^8.27/y + (4*t^8.34)/y - (2*t^8.51)/y - (5*t^8.76)/y - t^4.15*y - t^5.3*y - t^6.21*y - 2*t^6.45*y - 4*t^6.7*y - t^6.94*y + t^7.36*y + 4*t^7.6*y + 6*t^7.85*y + 8*t^8.09*y - t^8.27*y + 4*t^8.34*y - 2*t^8.51*y - 5*t^8.76*y | g1^7*g3^7*t^2.06 + 2*g1^2*g3^2*t^2.3 + g1^2*g2*t^2.55 + t^2.55/(g1^8*g2*g3^6) + (2*t^2.55)/(g1^3*g3^3) + t^2.79/(g1^8*g3^8) + t^3.7/(g1^7*g2*g3^5) + g1^3*g2*g3*t^3.7 + g1^14*g3^14*t^4.12 + 2*g1^9*g3^9*t^4.36 + (g3*t^4.6)/(g1*g2) + 6*g1^4*g3^4*t^4.6 + g1^9*g2*g3^7*t^4.6 + t^4.85/(g1^3*g2*g3^7) + (3*t^4.85)/(g1^6*g2*g3^4) + (5*t^4.85)/(g1*g3) + 3*g1^4*g2*g3^2*t^4.85 + g1*g2*g3^5*t^4.85 + g1^4*g2^2*t^5.09 + t^5.09/(g1^13*g2^2*g3^15) + t^5.09/(g1^16*g2^2*g3^12) + (2*t^5.09)/(g1^11*g2*g3^9) + (7*t^5.09)/(g1^6*g3^6) + (2*g2*t^5.09)/(g1*g3^3) + g1*g2^2*g3^3*t^5.09 + t^5.34/(g1^16*g2*g3^14) + (2*t^5.34)/(g1^11*g3^11) + (g2*t^5.34)/(g1^6*g3^8) + t^5.58/(g1^16*g3^16) - 4*t^6. + t^6./(g1^2*g2*g3^6) + (2*t^6.)/(g1^5*g2*g3^3) + 2*g1^5*g2*g3^3*t^6. + g1^2*g2*g3^6*t^6. + g1^21*g3^21*t^6.18 + t^6.24/(g1^12*g2^2*g3^14) + t^6.24/(g1^15*g2^2*g3^11) + t^6.24/(g1^10*g2*g3^8) + (2*t^6.24)/(g1^5*g3^5) + (g2*t^6.24)/g3^2 + g1^5*g2^2*g3*t^6.24 + g1^2*g2^2*g3^4*t^6.24 + 2*g1^16*g3^16*t^6.42 + t^6.49/(g1^15*g2*g3^13) + (g2*t^6.49)/(g1^5*g3^7) + (g1^6*g3^8*t^6.66)/g2 + 6*g1^11*g3^11*t^6.66 + g1^16*g2*g3^14*t^6.66 + (g1^4*t^6.91)/g2 + g1^9*g3^3*t^6.91 + (2*g1*g3^3*t^6.91)/g2 + 11*g1^6*g3^6*t^6.91 + g1^3*g3^9*t^6.91 + 2*g1^11*g2*g3^9*t^6.91 + g1^8*g2*g3^12*t^6.91 + t^7.15/(g1^9*g2^2*g3^5) + (3*t^7.15)/(g1*g2*g3^5) + (8*t^7.15)/(g1^4*g2*g3^2) + 11*g1*g3*t^7.15 + 8*g1^6*g2*g3^4*t^7.15 + 3*g1^3*g2*g3^7*t^7.15 + g1^11*g2^2*g3^7*t^7.15 + (4*t^7.4)/(g1^11*g2^2*g3^13) + (4*t^7.4)/(g1^14*g2^2*g3^10) + t^7.4/(g1^6*g2*g3^10) + t^7.4/(g1*g3^7) + (5*t^7.4)/(g1^9*g2*g3^7) + (18*t^7.4)/(g1^4*g3^4) + t^7.4/(g1^7*g3) + (5*g1*g2*t^7.4)/g3 + (g2*g3^2*t^7.4)/g1^2 + 4*g1^6*g2^2*g3^2*t^7.4 + 4*g1^3*g2^2*g3^5*t^7.4 + (2*g2^2*t^7.64)/g1^2 + g1^6*g2^3*t^7.64 + (2*t^7.64)/(g1^21*g2^3*g3^21) + t^7.64/(g1^24*g2^3*g3^18) + (2*t^7.64)/(g1^16*g2^2*g3^18) + (2*t^7.64)/(g1^19*g2^2*g3^15) + (2*t^7.64)/(g1^11*g2*g3^15) + (8*t^7.64)/(g1^14*g2*g3^12) + (12*t^7.64)/(g1^9*g3^9) + (8*g2*t^7.64)/(g1^4*g3^6) + (2*g2*t^7.64)/(g1^7*g3^3) + (2*g1*g2^2*t^7.64)/g3^3 + 2*g1^3*g2^3*g3^3*t^7.64 + t^7.88/(g1^21*g2^2*g3^23) + t^7.88/(g1^24*g2^2*g3^20) + (2*t^7.88)/(g1^19*g2*g3^17) + (7*t^7.88)/(g1^14*g3^14) + (2*g2*t^7.88)/(g1^9*g3^11) + (g2^2*t^7.88)/(g1^4*g3^8) + (g2^2*t^7.88)/(g1^7*g3^5) - (g1^2*g3^4*t^8.06)/g2 - 4*g1^7*g3^7*t^8.06 - g1^12*g2*g3^10*t^8.06 + t^8.13/(g1^24*g2*g3^22) + (2*t^8.13)/(g1^19*g3^19) + (g2*t^8.13)/(g1^14*g3^16) + g1^28*g3^28*t^8.23 - t^8.3/(g1^5*g2^2*g3^7) + (2*t^8.3)/(g2*g3^4) - (g1^5*t^8.3)/g3 + (3*t^8.3)/(g1^3*g2*g3) - 11*g1^2*g3^2*t^8.3 - (g3^5*t^8.3)/g1 + 3*g1^7*g2*g3^5*t^8.3 + 2*g1^4*g2*g3^8*t^8.3 - g1^9*g2^2*g3^11*t^8.3 + t^8.37/(g1^24*g3^24) + 2*g1^23*g3^23*t^8.48 + (2*t^8.55)/g1^6 - 4*g1^2*g2*t^8.55 - t^8.55/(g1^15*g2^3*g3^15) + (3*t^8.55)/(g1^10*g2^2*g3^12) + (3*t^8.55)/(g1^13*g2^2*g3^9) - t^8.55/(g1^5*g2*g3^9) + (2*t^8.55)/g3^6 - (4*t^8.55)/(g1^8*g2*g3^6) - (3*t^8.55)/(g1^3*g3^3) - (g2*g3^3*t^8.55)/g1 + 3*g1^7*g2^2*g3^3*t^8.55 + 3*g1^4*g2^2*g3^6*t^8.55 - g1^9*g2^3*g3^9*t^8.55 + (g1^13*g3^15*t^8.72)/g2 + 6*g1^18*g3^18*t^8.72 + g1^23*g2*g3^21*t^8.72 + (2*t^8.79)/(g1^20*g2^3*g3^20) + t^8.79/(g1^23*g2^3*g3^17) + t^8.79/(g1^18*g2^2*g3^14) + (2*t^8.79)/(g1^10*g2*g3^14) + (6*t^8.79)/(g1^13*g2*g3^11) - (3*t^8.79)/(g1^8*g3^8) + (6*g2*t^8.79)/(g1^3*g3^5) + (2*g2*t^8.79)/(g1^6*g3^2) + (g1^2*g2^2*t^8.79)/g3^2 + g1^7*g2^3*g3*t^8.79 + 2*g1^4*g2^3*g3^4*t^8.79 + (g1^11*g3^7*t^8.97)/g2 + g1^16*g3^10*t^8.97 + (2*g1^8*g3^10*t^8.97)/g2 + 11*g1^13*g3^13*t^8.97 + g1^10*g3^16*t^8.97 + 2*g1^18*g2*g3^16*t^8.97 + g1^15*g2*g3^19*t^8.97 - (g1*g3*t^4.15)/y - (g1^2*g3^2*t^5.3)/y - (g1^8*g3^8*t^6.21)/y - (2*g1^3*g3^3*t^6.45)/y - t^6.7/(g1^7*g2*g3^5*y) - (2*t^6.7)/(g1^2*g3^2*y) - (g1^3*g2*g3*t^6.7)/y - t^6.94/(g1^7*g3^7*y) + (g1^9*g3^9*t^7.36)/y + (g3*t^7.6)/(g1*g2*y) + (2*g1^4*g3^4*t^7.6)/y + (g1^9*g2*g3^7*t^7.6)/y + t^7.85/(g1^6*g2*g3^4*y) + (4*t^7.85)/(g1*g3*y) + (g1^4*g2*g3^2*t^7.85)/y + (2*t^8.09)/(g1^11*g2*g3^9*y) + (4*t^8.09)/(g1^6*g3^6*y) + (2*g2*t^8.09)/(g1*g3^3*y) - (g1^15*g3^15*t^8.27)/y + t^8.34/(g1^16*g2*g3^14*y) + (2*t^8.34)/(g1^11*g3^11*y) + (g2*t^8.34)/(g1^6*g3^8*y) - (2*g1^10*g3^10*t^8.51)/y - (5*g1^5*g3^5*t^8.76)/y - g1*g3*t^4.15*y - g1^2*g3^2*t^5.3*y - g1^8*g3^8*t^6.21*y - 2*g1^3*g3^3*t^6.45*y - (t^6.7*y)/(g1^7*g2*g3^5) - (2*t^6.7*y)/(g1^2*g3^2) - g1^3*g2*g3*t^6.7*y - (t^6.94*y)/(g1^7*g3^7) + g1^9*g3^9*t^7.36*y + (g3*t^7.6*y)/(g1*g2) + 2*g1^4*g3^4*t^7.6*y + g1^9*g2*g3^7*t^7.6*y + (t^7.85*y)/(g1^6*g2*g3^4) + (4*t^7.85*y)/(g1*g3) + g1^4*g2*g3^2*t^7.85*y + (2*t^8.09*y)/(g1^11*g2*g3^9) + (4*t^8.09*y)/(g1^6*g3^6) + (2*g2*t^8.09*y)/(g1*g3^3) - g1^15*g3^15*t^8.27*y + (t^8.34*y)/(g1^16*g2*g3^14) + (2*t^8.34*y)/(g1^11*g3^11) + (g2*t^8.34*y)/(g1^6*g3^8) - 2*g1^10*g3^10*t^8.51*y - 5*g1^5*g3^5*t^8.76*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57684 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.464 | 1.7323 | 0.8451 | [X:[], M:[0.6741, 0.8539], q:[0.4719, 0.382], qb:[0.4719, 0.382], phi:[0.382]] | t^2.02 + 2*t^2.29 + 3*t^2.56 + t^2.83 + t^3.44 + 2*t^3.71 + t^4.04 + 2*t^4.31 + 7*t^4.58 + 11*t^4.85 + 11*t^5.12 + 3*t^5.39 + t^5.46 + t^5.66 + 2*t^5.73 + 5*t^6. - t^4.15/y - t^5.29/y - t^4.15*y - t^5.29*y | detail |