Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58613 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4963 1.7277 0.8661 [X:[], M:[0.9867, 0.9867, 0.702], q:[0.5066, 0.4801], qb:[0.5066, 0.4801], phi:[0.3378]] [X:[], M:[[3, 0, 3], [3, 0, 3], [-8, 0, -8]], q:[[-3, -1, -3], [9, 0, 0]], qb:[[0, 1, 0], [0, 0, 9]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -2 t^2.03 + t^2.11 + t^2.88 + 4*t^2.96 + 2*t^3.97 + 2*t^4.05 + t^4.13 + t^4.21 + 2*t^4.91 + 7*t^4.99 + 5*t^5.07 + 2*t^5.41 + 2*t^5.49 + t^5.76 + 4*t^5.84 + 8*t^5.92 - 2*t^6. + 2*t^6.08 + 2*t^6.16 + t^6.24 + t^6.32 + 2*t^6.43 + 2*t^6.51 + 2*t^6.85 + 9*t^6.93 + 9*t^7.01 + 6*t^7.09 + 5*t^7.17 + 2*t^7.36 + 2*t^7.44 + 4*t^7.52 + 4*t^7.6 + 2*t^7.79 + 10*t^7.87 + 19*t^7.95 + 9*t^8.03 - 3*t^8.11 + 2*t^8.19 + 2*t^8.27 + 2*t^8.29 + t^8.34 + 8*t^8.37 + t^8.42 + 4*t^8.45 - 2*t^8.53 + t^8.64 + 4*t^8.72 + 8*t^8.8 + 11*t^8.88 - 4*t^8.96 - t^4.01/y - t^5.03/y - t^6.04/y - t^6.12/y - t^6.89/y - (4*t^6.97)/y - t^7.05/y + t^7.91/y + (2*t^7.99)/y + (3*t^8.07)/y - t^8.15/y - t^8.23/y + (4*t^8.84)/y + (5*t^8.92)/y - t^4.01*y - t^5.03*y - t^6.04*y - t^6.12*y - t^6.89*y - 4*t^6.97*y - t^7.05*y + t^7.91*y + 2*t^7.99*y + 3*t^8.07*y - t^8.15*y - t^8.23*y + 4*t^8.84*y + 5*t^8.92*y t^2.03/(g1^2*g3^2) + t^2.11/(g1^8*g3^8) + g1^9*g3^9*t^2.88 + g1^9*g2*t^2.96 + 2*g1^3*g3^3*t^2.96 + (g3^6*t^2.96)/(g1^3*g2) + (g1^8*g2*t^3.97)/g3 + (g3^5*t^3.97)/(g1^4*g2) + (2*t^4.05)/(g1^4*g3^4) + t^4.13/(g1^10*g3^10) + t^4.21/(g1^16*g3^16) + 2*g1^7*g3^7*t^4.91 + (2*g1^7*g2*t^4.99)/g3^2 + 3*g1*g3*t^4.99 + (2*g3^4*t^4.99)/(g1^5*g2) + (g1*g2*t^5.07)/g3^8 + (3*t^5.07)/(g1^5*g3^5) + t^5.07/(g1^11*g2*g3^2) + (g1^14*t^5.41)/(g2*g3^4) + (g2*g3^17*t^5.41)/g1 + (g1^2*t^5.49)/(g2^2*g3^7) + (g2^2*g3^8*t^5.49)/g1 + g1^18*g3^18*t^5.76 + g1^18*g2*g3^9*t^5.84 + 2*g1^12*g3^12*t^5.84 + (g1^6*g3^15*t^5.84)/g2 + g1^18*g2^2*t^5.92 + g1^12*g2*g3^3*t^5.92 + 4*g1^6*g3^6*t^5.92 + (g3^9*t^5.92)/g2 + (g3^12*t^5.92)/(g1^6*g2^2) - 4*t^6. + (g1^6*g2*t^6.)/g3^3 + (g3^3*t^6.)/(g1^6*g2) + (2*t^6.08)/(g1^6*g3^6) + (2*t^6.16)/(g1^12*g3^12) + t^6.24/(g1^18*g3^18) + t^6.32/(g1^24*g3^24) + (g1^13*t^6.43)/(g2*g3^5) + (g2*g3^16*t^6.43)/g1^2 + (g1*t^6.51)/(g2^2*g3^8) + (g2^2*g3^7*t^6.51)/g1^2 + g1^17*g2*g3^8*t^6.85 + (g1^5*g3^14*t^6.85)/g2 + (g1^17*g2^2*t^6.93)/g3 + g1^11*g2*g3^2*t^6.93 + 5*g1^5*g3^5*t^6.93 + (g3^8*t^6.93)/(g1*g2) + (g3^11*t^6.93)/(g1^7*g2^2) + (3*g1^5*g2*t^7.01)/g3^4 + (3*t^7.01)/(g1*g3) + (3*g3^2*t^7.01)/(g1^7*g2) + (g2*t^7.09)/(g1*g3^10) + (4*t^7.09)/(g1^7*g3^7) + t^7.09/(g1^13*g2*g3^4) + (g2*t^7.17)/(g1^7*g3^16) + (3*t^7.17)/(g1^13*g3^13) + t^7.17/(g1^19*g2*g3^10) + (g1^24*t^7.36)/g3^3 + (g3^24*t^7.36)/g1^3 + (2*g1^12*t^7.44)/(g2*g3^6) - (g1^6*t^7.44)/(g2^2*g3^3) - g1^3*g2^2*g3^12*t^7.44 + (2*g2*g3^15*t^7.44)/g1^3 + (2*t^7.52)/(g2^2*g3^9) + (2*g2^2*g3^6*t^7.52)/g1^3 + (g2^2*t^7.6)/g1^9 + t^7.6/(g1^6*g2^2*g3^15) + t^7.6/(g1^12*g2^3*g3^12) + (g2^3*t^7.6)/(g1^3*g3^3) + 2*g1^16*g3^16*t^7.79 + 3*g1^16*g2*g3^7*t^7.87 + 4*g1^10*g3^10*t^7.87 + (3*g1^4*g3^13*t^7.87)/g2 + (3*g1^16*g2^2*t^7.95)/g3^2 + 2*g1^10*g2*g3*t^7.95 + 9*g1^4*g3^4*t^7.95 + (2*g3^7*t^7.95)/(g1^2*g2) + (3*g3^10*t^7.95)/(g1^8*g2^2) + (g1^10*g2^2*t^8.03)/g3^8 + (4*g1^4*g2*t^8.03)/g3^5 - t^8.03/(g1^2*g3^2) + (4*g3*t^8.03)/(g1^8*g2) + (g3^4*t^8.03)/(g1^14*g2^2) - (g2*t^8.11)/(g1^2*g3^11) - t^8.11/(g1^8*g3^8) - t^8.11/(g1^14*g2*g3^5) + (2*t^8.19)/(g1^14*g3^14) + (2*t^8.27)/(g1^20*g3^20) + (g1^23*g3^5*t^8.29)/g2 + g1^8*g2*g3^26*t^8.29 + t^8.34/(g1^26*g3^26) + (g1^23*t^8.37)/g3^4 + (g1^17*t^8.37)/(g2*g3) + (2*g1^11*g3^2*t^8.37)/g2^2 + 2*g1^8*g2^2*g3^17*t^8.37 + g1^2*g2*g3^20*t^8.37 + (g3^23*t^8.37)/g1^4 + t^8.42/(g1^32*g3^32) - (g1^17*t^8.45)/g3^10 + (2*g1^11*t^8.45)/(g2*g3^7) + t^8.45/(g1*g2^3*g3) + g1^8*g2^3*g3^8*t^8.45 + (2*g2*g3^14*t^8.45)/g1^4 - (g3^17*t^8.45)/g1^10 - (g1^5*t^8.53)/(g2*g3^13) + t^8.53/(g1*g2^2*g3^10) - t^8.53/(g1^7*g2^3*g3^7) - g1^2*g2^3*g3^2*t^8.53 + (g2^2*g3^5*t^8.53)/g1^4 - (g2*g3^8*t^8.53)/g1^10 + g1^27*g3^27*t^8.64 + g1^27*g2*g3^18*t^8.72 + 2*g1^21*g3^21*t^8.72 + (g1^15*g3^24*t^8.72)/g2 + g1^27*g2^2*g3^9*t^8.8 + g1^21*g2*g3^12*t^8.8 + 4*g1^15*g3^15*t^8.8 + (g1^9*g3^18*t^8.8)/g2 + (g1^3*g3^21*t^8.8)/g2^2 + g1^27*g2^3*t^8.88 + g1^21*g2^2*g3^3*t^8.88 + 4*g1^15*g2*g3^6*t^8.88 - g1^9*g3^9*t^8.88 + (4*g1^3*g3^12*t^8.88)/g2 + (g3^15*t^8.88)/(g1^3*g2^2) + (g3^18*t^8.88)/(g1^9*g2^3) - 4*g1^9*g2*t^8.96 + (2*g1^15*g2^2*t^8.96)/g3^3 - (4*g3^6*t^8.96)/(g1^3*g2) + (2*g3^9*t^8.96)/(g1^9*g2^2) - t^4.01/(g1*g3*y) - t^5.03/(g1^2*g3^2*y) - t^6.04/(g1^3*g3^3*y) - t^6.12/(g1^9*g3^9*y) - (g1^8*g3^8*t^6.89)/y - (g1^8*g2*t^6.97)/(g3*y) - (2*g1^2*g3^2*t^6.97)/y - (g3^5*t^6.97)/(g1^4*g2*y) - t^7.05/(g1^4*g3^4*y) + (g1^7*g3^7*t^7.91)/y + (2*g1*g3*t^7.99)/y + (g1*g2*t^8.07)/(g3^8*y) + t^8.07/(g1^5*g3^5*y) + t^8.07/(g1^11*g2*g3^2*y) - t^8.15/(g1^11*g3^11*y) - t^8.23/(g1^17*g3^17*y) + (g1^18*g2*g3^9*t^8.84)/y + (2*g1^12*g3^12*t^8.84)/y + (g1^6*g3^15*t^8.84)/(g2*y) + (2*g1^12*g2*g3^3*t^8.92)/y + (g1^6*g3^6*t^8.92)/y + (2*g3^9*t^8.92)/(g2*y) - (t^4.01*y)/(g1*g3) - (t^5.03*y)/(g1^2*g3^2) - (t^6.04*y)/(g1^3*g3^3) - (t^6.12*y)/(g1^9*g3^9) - g1^8*g3^8*t^6.89*y - (g1^8*g2*t^6.97*y)/g3 - 2*g1^2*g3^2*t^6.97*y - (g3^5*t^6.97*y)/(g1^4*g2) - (t^7.05*y)/(g1^4*g3^4) + g1^7*g3^7*t^7.91*y + 2*g1*g3*t^7.99*y + (g1*g2*t^8.07*y)/g3^8 + (t^8.07*y)/(g1^5*g3^5) + (t^8.07*y)/(g1^11*g2*g3^2) - (t^8.15*y)/(g1^11*g3^11) - (t^8.23*y)/(g1^17*g3^17) + g1^18*g2*g3^9*t^8.84*y + 2*g1^12*g3^12*t^8.84*y + (g1^6*g3^15*t^8.84*y)/g2 + 2*g1^12*g2*g3^3*t^8.92*y + g1^6*g3^6*t^8.92*y + (2*g3^9*t^8.92*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57648 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.4759 1.6899 0.8734 [X:[], M:[0.9832, 0.9832], q:[0.5084, 0.4748], qb:[0.5084, 0.4748], phi:[0.3389]] t^2.03 + t^2.85 + 4*t^2.95 + t^3.87 + 2*t^3.97 + 2*t^4.07 + 2*t^4.88 + 6*t^4.98 + t^5.08 + 2*t^5.39 + 2*t^5.49 + t^5.7 + 4*t^5.8 + 9*t^5.9 - 2*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y detail