Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58606 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 0.9475 1.1482 0.8252 [X:[1.3945, 1.6055, 1.3945, 1.6055], M:[0.8945, 0.8945], q:[0.4037, 0.1926], qb:[0.2018, 0.2018], phi:[0.5]] [X:[[0, -3], [-3, 0], [3, 0], [0, 3]], M:[[3, 0], [0, -3]], q:[[-1, 1], [2, -2]], qb:[[1, 2], [-2, -1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }X_{4}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$ ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 1 4*t^2.68 + t^3. + 2*t^3.32 + t^3.87 + 4*t^4.18 + 2*t^4.5 + 6*t^4.82 + 10*t^5.37 + 2*t^5.68 + t^6. + t^6.23 + 2*t^6.32 + 4*t^6.55 + 16*t^6.87 + 6*t^7.18 + 20*t^7.5 + 20*t^8.05 + 4*t^8.13 + 11*t^8.37 - 8*t^8.68 + 4*t^8.92 - t^4.5/y - t^6./y - (2*t^7.18)/y + t^7.5/y + (2*t^7.82)/y + (6*t^8.37)/y - (2*t^8.68)/y - t^4.5*y - t^6.*y - 2*t^7.18*y + t^7.5*y + 2*t^7.82*y + 6*t^8.37*y - 2*t^8.68*y 2*g1^3*t^2.68 + (2*t^2.68)/g2^3 + t^3. + t^3.32/g1^3 + g2^3*t^3.32 + (g1^3*t^3.87)/g2^3 + 2*g1^3*t^4.18 + (2*t^4.18)/g2^3 + 2*t^4.5 + (3*t^4.82)/g1^3 + 3*g2^3*t^4.82 + 3*g1^6*t^5.37 + (3*t^5.37)/g2^6 + (4*g1^3*t^5.37)/g2^3 + g1^3*t^5.68 + t^5.68/g2^3 - t^6. + t^6./(g1^3*g2^3) + g1^3*g2^3*t^6. + (g1^6*t^6.23)/g2^6 + t^6.32/(g1^6*g2^3) + g1^3*g2^6*t^6.32 + (2*g1^3*t^6.55)/g2^6 + (2*g1^6*t^6.55)/g2^3 + t^6.63/g1^6 - (2*g2^3*t^6.63)/g1^3 + g2^6*t^6.63 + 4*g1^6*t^6.87 + (4*t^6.87)/g2^6 + (8*g1^3*t^6.87)/g2^3 + 3*g1^3*t^7.18 + (3*t^7.18)/g2^3 + 10*t^7.5 + (5*t^7.5)/(g1^3*g2^3) + 5*g1^3*g2^3*t^7.5 + t^7.82/g1^3 - t^7.82/(g1^6*g2^3) + g2^3*t^7.82 - g1^3*g2^6*t^7.82 + 4*g1^9*t^8.05 + (4*t^8.05)/g2^9 + (6*g1^3*t^8.05)/g2^6 + (6*g1^6*t^8.05)/g2^3 + t^8.13/g1^6 + (2*g2^3*t^8.13)/g1^3 + g2^6*t^8.13 + 4*g1^6*t^8.37 + (4*t^8.37)/g2^6 + (3*g1^3*t^8.37)/g2^3 - 5*g1^3*t^8.68 + t^8.68/(g1^3*g2^6) - (5*t^8.68)/g2^3 + g1^6*g2^3*t^8.68 + (2*g1^6*t^8.92)/g2^9 + (2*g1^9*t^8.92)/g2^6 - t^4.5/y - t^6./y - (g1^3*t^7.18)/y - t^7.18/(g2^3*y) + t^7.5/y + t^7.82/(g1^3*y) + (g2^3*t^7.82)/y + (g1^6*t^8.37)/y + t^8.37/(g2^6*y) + (4*g1^3*t^8.37)/(g2^3*y) - (g1^3*t^8.68)/y - t^8.68/(g2^3*y) - t^4.5*y - t^6.*y - g1^3*t^7.18*y - (t^7.18*y)/g2^3 + t^7.5*y + (t^7.82*y)/g1^3 + g2^3*t^7.82*y + g1^6*t^8.37*y + (t^8.37*y)/g2^6 + (4*g1^3*t^8.37*y)/g2^3 - g1^3*t^8.68*y - (t^8.68*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57477 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ 0.9393 1.1336 0.8286 [X:[1.426, 1.6092, 1.3908, 1.574], M:[0.8908], q:[0.3944, 0.2112], qb:[0.1796, 0.2148], phi:[0.5]] 2*t^2.67 + t^2.78 + t^3. + 2*t^3.22 + t^3.33 + t^3.95 + 2*t^4.17 + 2*t^4.28 + 2*t^4.5 + 3*t^4.72 + 3*t^4.83 + 3*t^5.34 + 2*t^5.45 + t^5.56 + t^5.67 + 3*t^5.89 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail