Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58578 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4131 1.6407 0.8613 [X:[], M:[0.8804], q:[0.2935, 0.5326], qb:[0.5869, 0.474], phi:[0.3522]] [X:[], M:[[-15]], q:[[-5], [25]], qb:[[-10], [26]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 0 t^2.11 + t^2.3 + 2*t^2.64 + t^3.02 + t^3.17 + t^3.36 + t^3.7 + t^4.08 + t^4.23 + 4*t^4.42 + t^4.6 + 3*t^4.75 + 2*t^4.94 + 3*t^5.13 + 3*t^5.28 + t^5.32 + 4*t^5.47 + 3*t^5.66 + 4*t^5.81 + t^6.04 + 3*t^6.19 + 2*t^6.34 + 2*t^6.38 + 6*t^6.53 + 6*t^6.72 + 4*t^6.87 + t^6.91 + 6*t^7.06 + t^7.1 + 6*t^7.25 + 3*t^7.4 + 8*t^7.44 + 7*t^7.58 + t^7.62 + 11*t^7.77 + 7*t^7.92 + 3*t^7.96 + 7*t^8.11 + 4*t^8.15 + 2*t^8.3 + t^8.34 + 6*t^8.45 + 9*t^8.49 + 2*t^8.64 + 4*t^8.68 + 17*t^8.83 + 5*t^8.98 - t^4.06/y - t^5.11/y - t^6.17/y - t^6.36/y - (2*t^6.7)/y - t^7.08/y - (2*t^7.23)/y + (3*t^7.94)/y + t^8.32/y + (2*t^8.66)/y - t^4.06*y - t^5.11*y - t^6.17*y - t^6.36*y - 2*t^6.7*y - t^7.08*y - 2*t^7.23*y + 3*t^7.94*y + t^8.32*y + 2*t^8.66*y t^2.11/g1^12 + g1^21*t^2.3 + (2*t^2.64)/g1^15 + g1^51*t^3.02 + t^3.17/g1^18 + g1^15*t^3.36 + t^3.7/g1^21 + g1^45*t^4.08 + t^4.23/g1^24 + 4*g1^9*t^4.42 + g1^42*t^4.6 + (3*t^4.75)/g1^27 + 2*g1^6*t^4.94 + 3*g1^39*t^5.13 + (3*t^5.28)/g1^30 + g1^72*t^5.32 + 4*g1^3*t^5.47 + 3*g1^36*t^5.66 + (4*t^5.81)/g1^33 + g1^102*t^6.04 + 3*g1^33*t^6.19 + (2*t^6.34)/g1^36 + 2*g1^66*t^6.38 + (6*t^6.53)/g1^3 + 6*g1^30*t^6.72 + (4*t^6.87)/g1^39 + g1^63*t^6.91 + (6*t^7.06)/g1^6 + g1^96*t^7.1 + 6*g1^27*t^7.25 + (3*t^7.4)/g1^42 + 8*g1^60*t^7.44 + (7*t^7.58)/g1^9 + g1^93*t^7.62 + 11*g1^24*t^7.77 + (7*t^7.92)/g1^45 + 3*g1^57*t^7.96 + (7*t^8.11)/g1^12 + 4*g1^90*t^8.15 + 2*g1^21*t^8.3 + g1^123*t^8.34 + (6*t^8.45)/g1^48 + 9*g1^54*t^8.49 + (2*t^8.64)/g1^15 + 4*g1^87*t^8.68 + 17*g1^18*t^8.83 + (5*t^8.98)/g1^51 - t^4.06/(g1^6*y) - t^5.11/(g1^12*y) - t^6.17/(g1^18*y) - (g1^15*t^6.36)/y - (2*t^6.7)/(g1^21*y) - (g1^45*t^7.08)/y - (2*t^7.23)/(g1^24*y) + (3*g1^6*t^7.94)/y + (g1^72*t^8.32)/y + (2*g1^36*t^8.66)/y - (t^4.06*y)/g1^6 - (t^5.11*y)/g1^12 - (t^6.17*y)/g1^18 - g1^15*t^6.36*y - (2*t^6.7*y)/g1^21 - g1^45*t^7.08*y - (2*t^7.23*y)/g1^24 + 3*g1^6*t^7.94*y + g1^72*t^8.32*y + 2*g1^36*t^8.66*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61155 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.3737 1.5716 0.8741 [X:[1.3333], M:[0.8333], q:[0.2778, 0.6111], qb:[0.5556, 0.5556], phi:[0.3333]] 3*t^2.5 + t^3. + 3*t^3.5 + t^4. + 5*t^4.5 + 5*t^5. + 8*t^5.5 + 5*t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y detail {a: 1055/768, c: 1207/768, X1: 4/3, M1: 5/6, q1: 5/18, q2: 11/18, qb1: 5/9, qb2: 5/9, phi1: 1/3}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57732 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.4351 1.6621 0.8634 [X:[], M:[0.8773], q:[0.3567, 0.6022], qb:[0.5205, 0.4151], phi:[0.3509]] t^2.11 + t^2.32 + 2*t^2.63 + t^3.05 + t^3.16 + t^3.37 + t^3.68 + t^4.1 + t^4.21 + 3*t^4.42 + t^4.63 + 3*t^4.74 + 2*t^4.95 + t^5. + t^5.1 + 2*t^5.16 + 3*t^5.26 + t^5.37 + t^5.42 + 3*t^5.47 + 2*t^5.68 + t^5.74 + 3*t^5.79 - t^6. - t^4.05/y - t^5.11/y - t^4.05*y - t^5.11*y detail