Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58570 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4657 | 1.6703 | 0.8775 | [X:[1.3505], M:[0.9206, 0.703], q:[0.4323, 0.5117], qb:[0.5677, 0.5399], phi:[0.3247]] | [X:[[0, 4]], M:[[3, -13], [-3, 3]], q:[[1, -1], [-2, 12]], qb:[[-1, 1], [2, 0]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | ${}$ | -2 | t^2.11 + t^2.76 + 2*t^2.92 + t^3. + t^3.15 + t^3.97 + t^4.05 + t^4.13 + t^4.21 + t^4.22 + 2*t^4.87 + t^4.95 + 2*t^5.03 + 2*t^5.1 + t^5.11 + t^5.19 + t^5.26 + t^5.34 + t^5.52 + 2*t^5.68 + t^5.83 + t^5.84 + t^5.85 + 3*t^5.92 - 2*t^6. + t^6.07 + 2*t^6.08 + t^6.15 + t^6.16 + t^6.31 + 2*t^6.32 + t^6.33 + 2*t^6.81 + 2*t^6.89 + t^6.9 + 3*t^6.97 + t^6.98 + 4*t^7.05 + 4*t^7.13 + t^7.14 + 2*t^7.21 + t^7.22 + t^7.28 + t^7.29 + t^7.3 + 2*t^7.37 + t^7.45 + t^7.53 + 2*t^7.63 + 2*t^7.78 + 2*t^7.79 + 4*t^7.87 + 3*t^7.95 + 3*t^8.02 + 4*t^8.03 + 4*t^8.1 - t^8.11 + t^8.18 + t^8.19 + 6*t^8.26 + t^8.27 + t^8.29 + 2*t^8.34 + 2*t^8.42 + t^8.43 + 2*t^8.44 + t^8.45 + t^8.5 + 2*t^8.6 + t^8.61 + t^8.75 - 2*t^8.76 + t^8.77 + 2*t^8.83 + 3*t^8.84 - 2*t^8.92 + 4*t^8.99 + t^8.92/y^2 - t^3.97/y - t^4.95/y - t^6.08/y - t^6.74/y - t^6.89/y - t^6.9/y - t^6.97/y - t^7.06/y - t^7.13/y - t^7.71/y - t^7.95/y + (2*t^8.03)/y - t^8.1/y + t^8.11/y - t^8.19/y + t^8.26/y + (2*t^8.68)/y + t^8.76/y + t^8.84/y - t^8.85/y + (2*t^8.92)/y - t^3.97*y - t^4.95*y - t^6.08*y - t^6.74*y - t^6.89*y - t^6.9*y - t^6.97*y - t^7.06*y - t^7.13*y - t^7.71*y - t^7.95*y + 2*t^8.03*y - t^8.1*y + t^8.11*y - t^8.19*y + t^8.26*y + 2*t^8.68*y + t^8.76*y + t^8.84*y - t^8.85*y + 2*t^8.92*y + t^8.92*y^2 | (g2^3*t^2.11)/g1^3 + (g1^3*t^2.76)/g2^13 + t^2.92/g2^6 + (g1^3*t^2.92)/g2 + t^3. + g2^12*t^3.15 + t^3.97/g2^2 + g2^4*t^4.05 + g2^10*t^4.13 + (g2^11*t^4.21)/g1^3 + (g2^6*t^4.22)/g1^6 + t^4.87/g2^10 + (g1^3*t^4.87)/g2^5 + t^4.95/g2^4 + t^5.03/(g1^3*g2^3) + g2^2*t^5.03 + 2*g2^8*t^5.1 + (g2^3*t^5.11)/g1^3 + (g2^9*t^5.19)/g1^3 + (g2^15*t^5.26)/g1^3 + (g2^21*t^5.34)/g1^3 + (g1^6*t^5.52)/g2^26 + (g1^3*t^5.68)/g2^19 + (g1^6*t^5.68)/g2^14 + (g1^6*t^5.83)/g2^2 + (g1^3*t^5.84)/g2^7 + t^5.85/g2^12 + t^5.92/g2^6 + (2*g1^3*t^5.92)/g2 - 2*t^6. + g1^3*g2^11*t^6.07 + 2*g2^6*t^6.08 + g2^12*t^6.15 + (g2^7*t^6.16)/g1^3 + g2^24*t^6.31 + (g2^14*t^6.32)/g1^6 + (g2^19*t^6.32)/g1^3 + (g2^9*t^6.33)/g1^9 + (2*g1^3*t^6.81)/g2^9 + (2*g1^3*t^6.89)/g2^3 + t^6.9/g2^8 + (2*t^6.97)/g2^2 + g1^3*g2^3*t^6.97 + t^6.98/(g1^3*g2^7) + 3*g2^4*t^7.05 + g1^3*g2^9*t^7.05 + (2*g2^5*t^7.13)/g1^3 + 2*g2^10*t^7.13 + t^7.14/g1^6 + (g2^11*t^7.21)/g1^3 + g2^16*t^7.21 + (g2^6*t^7.22)/g1^6 + g2^22*t^7.28 + (g2^17*t^7.29)/g1^3 + (g2^12*t^7.3)/g1^6 + (g2^18*t^7.37)/g1^6 + (g2^23*t^7.37)/g1^3 + (g2^24*t^7.45)/g1^6 + (g2^30*t^7.53)/g1^6 + (g1^3*t^7.63)/g2^23 + (g1^6*t^7.63)/g2^18 + (2*g1^6*t^7.78)/g2^6 + t^7.79/g2^16 + (g1^3*t^7.79)/g2^11 + t^7.87/g2^10 + (3*g1^3*t^7.87)/g2^5 + t^7.95/(g1^3*g2^9) + (2*t^7.95)/g2^4 + 3*g1^3*g2^7*t^8.02 + t^8.03/(g1^3*g2^3) + 3*g2^2*t^8.03 + 4*g2^8*t^8.1 - (g2^3*t^8.11)/g1^3 + g2^14*t^8.18 + (g2^9*t^8.19)/g1^3 + (2*g2^15*t^8.26)/g1^3 + 4*g2^20*t^8.26 + (g2^10*t^8.27)/g1^6 + (g1^9*t^8.29)/g2^39 + (2*g2^21*t^8.34)/g1^3 + (g2^22*t^8.42)/g1^6 + (g2^27*t^8.42)/g1^3 + (g2^17*t^8.43)/g1^9 + (g1^9*t^8.44)/g2^27 + (g2^12*t^8.44)/g1^12 + (g1^6*t^8.45)/g2^32 + (g2^33*t^8.5)/g1^3 + (g1^6*t^8.6)/g2^20 + (g1^9*t^8.6)/g2^15 + (g1^3*t^8.61)/g2^25 + (g1^9*t^8.75)/g2^3 - (3*g1^3*t^8.76)/g2^13 + (g1^6*t^8.76)/g2^8 + t^8.77/g2^18 + (2*g1^6*t^8.83)/g2^2 + (3*g1^3*t^8.84)/g2^7 + t^8.92/g2^6 - (3*g1^3*t^8.92)/g2 + 3*g1^3*g2^5*t^8.99 + g1^6*g2^10*t^8.99 + t^8.92/(g2^6*y^2) - t^3.97/(g2^2*y) - t^4.95/(g2^4*y) - (g2*t^6.08)/(g1^3*y) - (g1^3*t^6.74)/(g2^15*y) - (g1^3*t^6.89)/(g2^3*y) - t^6.9/(g2^8*y) - t^6.97/(g2^2*y) - t^7.06/(g1^3*g2*y) - (g2^10*t^7.13)/y - (g1^3*t^7.71)/(g2^17*y) - t^7.95/(g2^4*y) + t^8.03/(g1^3*g2^3*y) + (g2^2*t^8.03)/y - (g2^8*t^8.1)/y + (g2^3*t^8.11)/(g1^3*y) - (g2^4*t^8.19)/(g1^6*y) + (g2^15*t^8.26)/(g1^3*y) + (g1^3*t^8.68)/(g2^19*y) + (g1^6*t^8.68)/(g2^14*y) + (g1^3*t^8.76)/(g2^13*y) + (g1^3*t^8.84)/(g2^7*y) - t^8.85/(g2^12*y) + (2*g1^3*t^8.92)/(g2*y) - (t^3.97*y)/g2^2 - (t^4.95*y)/g2^4 - (g2*t^6.08*y)/g1^3 - (g1^3*t^6.74*y)/g2^15 - (g1^3*t^6.89*y)/g2^3 - (t^6.9*y)/g2^8 - (t^6.97*y)/g2^2 - (t^7.06*y)/(g1^3*g2) - g2^10*t^7.13*y - (g1^3*t^7.71*y)/g2^17 - (t^7.95*y)/g2^4 + (t^8.03*y)/(g1^3*g2^3) + g2^2*t^8.03*y - g2^8*t^8.1*y + (g2^3*t^8.11*y)/g1^3 - (g2^4*t^8.19*y)/g1^6 + (g2^15*t^8.26*y)/g1^3 + (g1^3*t^8.68*y)/g2^19 + (g1^6*t^8.68*y)/g2^14 + (g1^3*t^8.76*y)/g2^13 + (g1^3*t^8.84*y)/g2^7 - (t^8.85*y)/g2^12 + (2*g1^3*t^8.92*y)/g2 + (t^8.92*y^2)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61139 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ | 1.3269 | 1.5219 | 0.8719 | [X:[1.2932, 1.3534], M:[0.767, 1.0], q:[0.3333, 0.5663], qb:[0.6667, 0.3133], phi:[0.3534]] | t^2.3 + t^2.64 + 2*t^3. + t^3.18 + t^3.7 + t^3.88 + 3*t^4.06 + t^4.6 + 3*t^4.76 + t^4.94 + t^5.12 + t^5.28 + t^5.3 + t^5.46 + t^5.48 + 2*t^5.64 + 3*t^5.82 + 2*t^6. - t^4.06/y - t^5.12/y - t^4.06*y - t^5.12*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57613 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4453 | 1.6323 | 0.8855 | [X:[1.3487], M:[0.916], q:[0.4293, 0.5133], qb:[0.5707, 0.5329], phi:[0.3256]] | t^2.75 + t^2.89 + t^2.93 + t^3. + t^3.14 + t^3.86 + t^3.98 + t^4.05 + t^4.12 + t^4.23 + t^4.84 + t^4.95 + 2*t^5.09 + t^5.21 + t^5.34 + t^5.5 + t^5.63 + t^5.68 + t^5.77 + t^5.82 + t^5.86 + 2*t^5.89 + t^5.93 - 2*t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y | detail |