Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58562 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 0.9904 1.2004 0.8251 [X:[1.536, 1.5502, 1.4498, 1.464], M:[0.964, 0.7265, 0.9498], q:[0.2626, 0.2483], qb:[0.2014, 0.2877], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[0, 0, 1], [3, 2, 1], [0, 1, 0]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$ ${}$ -4 t^2.18 + 2*t^2.85 + 2*t^2.89 + t^3. + t^3.57 + t^3.78 + t^3.83 + 2*t^4.35 + t^4.36 + 2*t^4.39 + t^4.5 + 2*t^4.61 + 2*t^4.65 + 2*t^5.03 + 3*t^5.07 + t^5.18 + t^5.28 + t^5.32 + t^5.33 + 3*t^5.7 + 3*t^5.74 + t^5.75 + 3*t^5.78 + t^5.85 + t^5.89 - 4*t^6. + t^6.01 - t^6.04 - t^6.11 - t^6.15 - t^6.26 + t^6.31 + 2*t^6.42 + 2*t^6.46 + 2*t^6.53 + t^6.54 + 3*t^6.57 + 2*t^6.63 + t^6.68 + t^6.74 + t^6.78 + 2*t^6.79 + 3*t^6.83 + t^6.86 - 2*t^6.93 + t^7.09 + t^7.14 + 4*t^7.2 + 2*t^7.21 + 7*t^7.24 + 3*t^7.25 + 4*t^7.28 + 3*t^7.35 + t^7.36 + 2*t^7.39 + t^7.4 + 4*t^7.46 + 6*t^7.5 + t^7.51 + 3*t^7.54 + t^7.56 + t^7.61 + t^7.66 - t^7.76 - t^7.81 + 3*t^7.88 + 5*t^7.92 + t^7.93 + 5*t^7.96 + t^8.03 + t^8.07 + 2*t^8.13 + 2*t^8.17 - 2*t^8.18 + t^8.19 + t^8.22 - t^8.24 - t^8.29 - t^8.32 - t^8.33 - t^8.36 - 2*t^8.43 - t^8.44 - 2*t^8.47 + t^8.49 + 4*t^8.55 + 3*t^8.59 + 2*t^8.6 + 4*t^8.63 + 3*t^8.64 + 4*t^8.68 + 4*t^8.7 + 2*t^8.71 + t^8.72 + 2*t^8.74 + 3*t^8.75 + 4*t^8.78 - 10*t^8.85 + t^8.86 - 11*t^8.89 + 2*t^8.9 + t^8.91 - 2*t^8.93 + t^8.96 + 2*t^8.97 - t^4.5/y - t^6./y - t^6.68/y - t^7.35/y - t^7.39/y + t^7.5/y + t^7.61/y + t^7.65/y + (2*t^8.03)/y + (2*t^8.07)/y + t^8.32/y + t^8.7/y + (4*t^8.74)/y + t^8.75/y + t^8.78/y - t^8.85/y - t^8.86/y - t^8.89/y + t^8.96/y - t^4.5*y - t^6.*y - t^6.68*y - t^7.35*y - t^7.39*y + t^7.5*y + t^7.61*y + t^7.65*y + 2*t^8.03*y + 2*t^8.07*y + t^8.32*y + t^8.7*y + 4*t^8.74*y + t^8.75*y + t^8.78*y - t^8.85*y - t^8.86*y - t^8.89*y + t^8.96*y g1^3*g2^2*g3*t^2.18 + 2*g2*t^2.85 + 2*g3*t^2.89 + t^3. + g1^3*g2^2*g3^2*t^3.57 + t^3.78/(g1^3*g2*g3^2) + g1^3*g2*g3*t^3.83 + 2*g2*t^4.35 + g1^6*g2^4*g3^2*t^4.36 + 2*g3*t^4.39 + t^4.5 + (2*t^4.61)/g3 + (2*t^4.65)/g2 + 2*g1^3*g2^3*g3*t^5.03 + 3*g1^3*g2^2*g3^2*t^5.07 + g1^3*g2^2*g3*t^5.18 + t^5.28/(g1^3*g2*g3^2) + t^5.32/(g1^3*g2^2*g3) + g1^3*g2*g3*t^5.33 + 3*g2^2*t^5.7 + 3*g2*g3*t^5.74 + g1^6*g2^4*g3^3*t^5.75 + 3*g3^2*t^5.78 + g2*t^5.85 + g3*t^5.89 - 4*t^6. + g1^6*g2^3*g3^2*t^6.01 - (g3*t^6.04)/g2 - t^6.11/g3 - t^6.15/g2 - t^6.26/(g2*g3) + g1^3*g2^3*g3^3*t^6.31 + 2*g1^3*g2^3*g3^2*t^6.42 + 2*g1^3*g2^2*g3^3*t^6.46 + 2*g1^3*g2^3*g3*t^6.53 + g1^9*g2^6*g3^3*t^6.54 + 3*g1^3*g2^2*g3^2*t^6.57 + (2*t^6.63)/(g1^3*g3^2) + g1^3*g2^2*g3*t^6.68 + t^6.74/(g1^3*g3^3) + t^6.78/(g1^3*g2*g3^2) + 2*g1^3*g2^2*t^6.79 + 3*g1^3*g2*g3*t^6.83 + t^6.86/(g1^3*g2^3) - (2*t^6.93)/(g1^3*g2^2*g3^2) + g1^3*t^7.09 + g1^6*g2^4*g3^4*t^7.14 + 4*g2^2*t^7.2 + 2*g1^6*g2^5*g3^2*t^7.21 + 7*g2*g3*t^7.24 + 3*g1^6*g2^4*g3^3*t^7.25 + 4*g3^2*t^7.28 + 3*g2*t^7.35 + g1^6*g2^4*g3^2*t^7.36 + 2*g3*t^7.39 + g1^6*g2^3*g3^3*t^7.4 + (4*g2*t^7.46)/g3 + 6*t^7.5 + g1^6*g2^3*g3^2*t^7.51 + (3*g3*t^7.54)/g2 + t^7.56/(g1^6*g2^2*g3^4) + t^7.61/g3 + g1^6*g2^2*g3^2*t^7.66 - t^7.76/(g2*g3) - g1^3*g2^3*g3^3*t^7.81 + 3*g1^3*g2^4*g3*t^7.88 + 5*g1^3*g2^3*g3^2*t^7.92 + g1^9*g2^6*g3^4*t^7.93 + 5*g1^3*g2^2*g3^3*t^7.96 + g1^3*g2^3*g3*t^8.03 + g1^3*g2^2*g3^2*t^8.07 + (2*t^8.13)/(g1^3*g3^2) + (2*t^8.17)/(g1^3*g2*g3) - 2*g1^3*g2^2*g3*t^8.18 + g1^9*g2^5*g3^3*t^8.19 + g1^3*g2*g3^2*t^8.22 - t^8.24/(g1^3*g3^3) - g1^3*g2^2*t^8.29 - t^8.32/(g1^3*g2^2*g3) - g1^3*g2*g3*t^8.33 - t^8.36/(g1^3*g2^3) - (2*t^8.43)/(g1^3*g2^2*g3^2) - g1^3*g2*t^8.44 - (2*t^8.47)/(g1^3*g2^3*g3) + g1^6*g2^5*g3^4*t^8.49 + 4*g2^3*t^8.55 - g1^3*t^8.59 + 4*g2^2*g3*t^8.59 + 2*g1^6*g2^5*g3^3*t^8.6 + 4*g2*g3^2*t^8.63 + 3*g1^6*g2^4*g3^4*t^8.64 + 4*g3^3*t^8.68 + 4*g2^2*t^8.7 + 2*g1^6*g2^5*g3^2*t^8.71 + g1^12*g2^8*g3^4*t^8.72 + 2*g2*g3*t^8.74 + 3*g1^6*g2^4*g3^3*t^8.75 + 4*g3^2*t^8.78 - 10*g2*t^8.85 + g1^6*g2^4*g3^2*t^8.86 - 11*g3*t^8.89 + 2*g1^6*g2^3*g3^3*t^8.9 + (g2^2*t^8.91)/g3^2 - (2*g3^2*t^8.93)/g2 + (g2*t^8.96)/g3 + 2*g1^6*g2^4*g3*t^8.97 - t^4.5/y - t^6./y - (g1^3*g2^2*g3*t^6.68)/y - (g2*t^7.35)/y - (g3*t^7.39)/y + t^7.5/y + t^7.61/(g3*y) + t^7.65/(g2*y) + (2*g1^3*g2^3*g3*t^8.03)/y + (2*g1^3*g2^2*g3^2*t^8.07)/y + t^8.32/(g1^3*g2^2*g3*y) + (g2^2*t^8.7)/y + (4*g2*g3*t^8.74)/y + (g1^6*g2^4*g3^3*t^8.75)/y + (g3^2*t^8.78)/y - (g2*t^8.85)/y - (g1^6*g2^4*g3^2*t^8.86)/y - (g3*t^8.89)/y + (g2*t^8.96)/(g3*y) - t^4.5*y - t^6.*y - g1^3*g2^2*g3*t^6.68*y - g2*t^7.35*y - g3*t^7.39*y + t^7.5*y + (t^7.61*y)/g3 + (t^7.65*y)/g2 + 2*g1^3*g2^3*g3*t^8.03*y + 2*g1^3*g2^2*g3^2*t^8.07*y + (t^8.32*y)/(g1^3*g2^2*g3) + g2^2*t^8.7*y + 4*g2*g3*t^8.74*y + g1^6*g2^4*g3^3*t^8.75*y + g3^2*t^8.78*y - g2*t^8.85*y - g1^6*g2^4*g3^2*t^8.86*y - g3*t^8.89*y + (g2*t^8.96*y)/g3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57512 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$ 0.9877 1.1935 0.8275 [X:[1.535, 1.5082, 1.4918, 1.465], M:[0.965, 0.7415], q:[0.2439, 0.2706], qb:[0.2211, 0.2643], phi:[0.5]] t^2.22 + 2*t^2.9 + t^2.98 + t^3. + t^3.02 + t^3.62 + t^3.75 + t^3.86 + 2*t^4.4 + t^4.45 + 2*t^4.48 + t^4.5 + 2*t^4.52 + 2*t^4.6 + 3*t^5.12 + t^5.2 + t^5.22 + 2*t^5.25 + t^5.28 + t^5.36 + 3*t^5.79 + t^5.84 + t^5.87 + t^5.9 + t^5.92 + t^5.95 + t^5.97 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail