Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58561 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.1636 1.3527 0.8603 [X:[1.2786, 1.4775], M:[0.9005, 1.0995], q:[0.607, 0.408], qb:[0.1144, 0.6022], phi:[0.3781]] [X:[[2, 0], [0, 6]], M:[[1, -3], [-1, 3]], q:[[-1, 1], [1, -5]], qb:[[-1, -1], [-5, -13]], phi:[[1, 3]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }X_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}$ -3 t^2.27 + t^2.7 + t^3.03 + t^3.3 + t^3.4 + 2*t^3.63 + 2*t^3.84 + t^4.16 + 3*t^4.43 + 2*t^4.76 + t^4.97 + t^5.09 + 2*t^5.3 + t^5.4 + t^5.57 + t^5.73 + 4*t^5.9 - 3*t^6. + t^6.06 + 3*t^6.1 + t^6.22 + 2*t^6.33 + t^6.43 + 2*t^6.54 - t^6.6 + 2*t^6.66 + 4*t^6.7 + 3*t^6.87 + t^6.93 + 2*t^7.03 + t^7.07 + 2*t^7.13 + t^7.2 + t^7.24 + 3*t^7.25 + t^7.36 + 5*t^7.46 + t^7.57 + 4*t^7.67 + t^7.73 - t^7.78 + 4*t^7.79 + 3*t^7.84 - t^7.9 - t^7.94 + 4*t^8. + 5*t^8.06 + t^8.1 + t^8.12 + 2*t^8.16 + t^8.27 + 3*t^8.33 - t^8.37 + 4*t^8.39 + t^8.43 - t^8.49 + 7*t^8.6 - 5*t^8.7 + 2*t^8.72 + t^8.76 + 3*t^8.81 + 4*t^8.87 - t^8.91 + 8*t^8.93 - t^4.13/y - t^5.27/y - t^6.4/y - t^7.16/y - (2*t^7.54)/y - t^7.76/y + t^7.87/y - t^7.97/y - t^8.57/y + t^8.73/y + t^8.9/y - t^4.13*y - t^5.27*y - t^6.4*y - t^7.16*y - 2*t^7.54*y - t^7.76*y + t^7.87*y - t^7.97*y - t^8.57*y + t^8.73*y + t^8.9*y g1^2*g2^6*t^2.27 + (g1*t^2.7)/g2^3 + t^3.03/(g1^4*g2^18) + (g2^3*t^3.3)/g1 + g1^3*g2^9*t^3.4 + (2*t^3.63)/(g1^6*g2^12) + 2*g1^2*t^3.84 + t^4.16/(g1^3*g2^15) + 3*g2^6*t^4.43 + (2*t^4.76)/(g1^5*g2^9) + g1^3*g2^3*t^4.97 + t^5.09/(g1^10*g2^24) + (2*t^5.3)/(g1^2*g2^12) + (g1^2*t^5.4)/g2^6 + g1*g2^9*t^5.57 + t^5.73/(g1^3*g2^21) + (4*t^5.9)/(g1^4*g2^6) - 3*t^6. + t^6.06/(g1^8*g2^36) + 3*g1^4*g2^6*t^6.1 + t^6.22/(g1^9*g2^21) + (2*t^6.33)/(g1^5*g2^15) + t^6.43/(g1*g2^9) + (2*g1^3*t^6.54)/g2^3 - (g2^6*t^6.6)/g1^2 + (2*t^6.66)/(g1^10*g2^30) + 4*g1^2*g2^12*t^6.7 + (3*t^6.87)/(g1^2*g2^18) + t^6.93/(g1^7*g2^9) + (2*t^7.03)/(g1^3*g2^3) + (g1^6*t^7.07)/g2^6 + 2*g1*g2^3*t^7.13 + t^7.2/(g1^7*g2^33) + g1^5*g2^9*t^7.24 + (3*t^7.25)/(g1^12*g2^24) + t^7.36/(g1^8*g2^18) + (5*t^7.46)/(g1^4*g2^12) + t^7.57/g2^6 + 4*g1^4*t^7.67 + (g2^9*t^7.73)/g1 - g1^8*g2^6*t^7.78 + (4*t^7.79)/(g1^9*g2^27) + 3*g1^3*g2^15*t^7.84 - t^7.9/(g1^5*g2^21) - g1^7*g2^21*t^7.94 + (4*t^8.)/(g1*g2^15) + (5*t^8.06)/(g1^6*g2^6) + (g1^3*t^8.1)/g2^9 + t^8.12/(g1^14*g2^42) + (2*t^8.16)/g1^2 + g1^2*g2^6*t^8.27 + (3*t^8.33)/(g1^6*g2^30) - g1^6*g2^12*t^8.37 + (4*t^8.39)/(g1^11*g2^21) + t^8.43/(g1^2*g2^24) - t^8.49/(g1^7*g2^15) + (7*t^8.6)/(g1^3*g2^9) - (5*g1*t^8.7)/g2^3 + (2*t^8.72)/(g1^16*g2^36) + t^8.76/(g1^7*g2^39) + 3*g1^5*g2^3*t^8.81 + 4*g2^12*t^8.87 - g1^9*g2^9*t^8.91 + (8*t^8.93)/(g1^8*g2^24) - (g1*g2^3*t^4.13)/y - (g1^2*g2^6*t^5.27)/y - (g1^3*g2^9*t^6.4)/y - t^7.16/(g1^3*g2^15*y) - (2*g1^4*g2^12*t^7.54)/y - t^7.76/(g1^5*g2^9*y) + t^7.87/(g1*g2^3*y) - (g1^3*g2^3*t^7.97)/y - (g1*g2^9*t^8.57)/y + t^8.73/(g1^3*g2^21*y) + t^8.9/(g1^4*g2^6*y) - g1*g2^3*t^4.13*y - g1^2*g2^6*t^5.27*y - g1^3*g2^9*t^6.4*y - (t^7.16*y)/(g1^3*g2^15) - 2*g1^4*g2^12*t^7.54*y - (t^7.76*y)/(g1^5*g2^9) + (t^7.87*y)/(g1*g2^3) - g1^3*g2^3*t^7.97*y - g1*g2^9*t^8.57*y + (t^8.73*y)/(g1^3*g2^21) + (t^8.9*y)/(g1^4*g2^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57639 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ 1.2512 1.4516 0.8619 [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y detail