Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58560 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.2682 | 1.4838 | 0.8547 | [X:[1.4046, 1.4046], M:[1.0, 1.0, 0.7863], q:[0.3782, 0.3782], qb:[0.2173, 0.5991], phi:[0.4046]] | [X:[[0, 2, 0], [0, 0, 2]], M:[[0, 1, -1], [0, -1, 1], [0, -3, -3]], q:[[-1, -6, -4], [-1, -4, -6]], qb:[[1, 4, 4], [1, 0, 0]], phi:[[0, 1, 1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$ | ${}M_{1}^{2}$, ${ }M_{2}^{2}$ | -3 | t^2.36 + t^2.43 + 2*t^2.93 + 2*t^3. + 2*t^4.15 + 4*t^4.21 + t^4.31 + 2*t^4.62 + t^4.72 + t^4.79 + 2*t^5.29 + 6*t^5.36 + 2*t^5.43 + t^5.46 + t^5.53 + t^5.6 + 2*t^5.83 + 3*t^5.86 + 4*t^5.93 - 3*t^6. - t^6.07 - t^6.47 + 2*t^6.5 + 4*t^6.57 + 4*t^6.64 + 2*t^6.67 + 2*t^6.74 + 2*t^6.98 + 6*t^7.04 + 5*t^7.08 + 11*t^7.15 + 3*t^7.21 + 2*t^7.25 - t^7.28 - 2*t^7.38 + 4*t^7.55 + 2*t^7.62 + 2*t^7.65 - 4*t^7.69 + 4*t^7.72 + 2*t^7.79 + t^7.82 + 2*t^7.89 + t^7.96 + t^8.02 + 3*t^8.22 + 2*t^8.26 + 14*t^8.29 + 11*t^8.36 + 2*t^8.39 + 2*t^8.43 + 4*t^8.46 - t^8.5 + 2*t^8.53 + t^8.63 + 7*t^8.76 + 4*t^8.8 + 3*t^8.83 + 8*t^8.86 - 5*t^8.9 - 4*t^8.93 - t^4.21/y - t^5.43/y - t^6.57/y - t^6.64/y - (2*t^7.15)/y + t^7.79/y - t^7.85/y + (2*t^8.29)/y + (2*t^8.36)/y - (2*t^8.43)/y + t^8.86/y + (4*t^8.93)/y - t^4.21*y - t^5.43*y - t^6.57*y - t^6.64*y - 2*t^7.15*y + t^7.79*y - t^7.85*y + 2*t^8.29*y + 2*t^8.36*y - 2*t^8.43*y + t^8.86*y + 4*t^8.93*y | t^2.36/(g2^3*g3^3) + g2^2*g3^2*t^2.43 + t^2.93/(g2^4*g3^6) + t^2.93/(g2^6*g3^4) + (g2*t^3.)/g3 + (g3*t^3.)/g2 + t^4.15/(g2^3*g3^5) + t^4.15/(g2^5*g3^3) + 2*g2^2*t^4.21 + 2*g3^2*t^4.21 + g1^3*g2^9*g3^9*t^4.31 + t^4.62/(g1^3*g2^13*g3^15) + t^4.62/(g1^3*g2^15*g3^13) + t^4.72/(g2^6*g3^6) + t^4.79/(g2*g3) + t^5.29/(g2^7*g3^9) + t^5.29/(g2^9*g3^7) + (3*t^5.36)/(g2^2*g3^4) + (3*t^5.36)/(g2^4*g3^2) + g2^3*g3*t^5.43 + g2*g3^3*t^5.43 + g1^3*g2^5*g3^5*t^5.46 + g1^3*g2^10*g3^10*t^5.53 + g1^3*g2^15*g3^15*t^5.6 + t^5.83/(g1^3*g2^12*g3^14) + t^5.83/(g1^3*g2^14*g3^12) + t^5.86/(g2^8*g3^12) + t^5.86/(g2^10*g3^10) + t^5.86/(g2^12*g3^8) + t^5.93/(g2^3*g3^7) + (2*t^5.93)/(g2^5*g3^5) + t^5.93/(g2^7*g3^3) - 3*t^6. - g2^5*g3^5*t^6.07 - t^6.47/(g1^3*g2^10*g3^10) + t^6.5/(g2^6*g3^8) + t^6.5/(g2^8*g3^6) + (2*t^6.57)/(g2*g3^3) + (2*t^6.57)/(g2^3*g3) + 2*g2^4*g3^2*t^6.64 + 2*g2^2*g3^4*t^6.64 + 2*g1^3*g2^6*g3^6*t^6.67 + 2*g1^3*g2^11*g3^11*t^6.74 + t^6.98/(g1^3*g2^16*g3^18) + t^6.98/(g1^3*g2^18*g3^16) + t^7.04/(g1^3*g2^9*g3^15) + (2*t^7.04)/(g1^3*g2^11*g3^13) + (2*t^7.04)/(g1^3*g2^13*g3^11) + t^7.04/(g1^3*g2^15*g3^9) + t^7.08/(g2^7*g3^11) + (3*t^7.08)/(g2^9*g3^9) + t^7.08/(g2^11*g3^7) + (3*t^7.15)/(g2^2*g3^6) + (5*t^7.15)/(g2^4*g3^4) + (3*t^7.15)/(g2^6*g3^2) + (g2^3*t^7.21)/g3 + g2*g3*t^7.21 + (g3^3*t^7.21)/g2 + g1^3*g2^5*g3^3*t^7.25 + g1^3*g2^3*g3^5*t^7.25 - g2^6*g3^6*t^7.28 - g1^3*g2^15*g3^13*t^7.38 - g1^3*g2^13*g3^15*t^7.38 + t^7.55/(g1^3*g2^17*g3^21) + (2*t^7.55)/(g1^3*g2^19*g3^19) + t^7.55/(g1^3*g2^21*g3^17) + t^7.62/(g1^3*g2^12*g3^16) + t^7.62/(g1^3*g2^16*g3^12) + t^7.65/(g2^10*g3^12) + t^7.65/(g2^12*g3^10) - t^7.69/(g1^3*g2^7*g3^11) - (2*t^7.69)/(g1^3*g2^9*g3^9) - t^7.69/(g1^3*g2^11*g3^7) + (2*t^7.72)/(g2^5*g3^7) + (2*t^7.72)/(g2^7*g3^5) + t^7.79/g2^2 + t^7.79/g3^2 + g1^3*g2^2*g3^2*t^7.82 + 2*g1^3*g2^7*g3^7*t^7.89 + g1^3*g2^12*g3^12*t^7.96 + g1^3*g2^17*g3^17*t^8.02 + t^8.22/(g2^11*g3^15) + t^8.22/(g2^13*g3^13) + t^8.22/(g2^15*g3^11) + t^8.26/(g1^3*g2^10*g3^12) + t^8.26/(g1^3*g2^12*g3^10) + (4*t^8.29)/(g2^6*g3^10) + (6*t^8.29)/(g2^8*g3^8) + (4*t^8.29)/(g2^10*g3^6) + (4*t^8.36)/(g2*g3^5) + (3*t^8.36)/(g2^3*g3^3) + (4*t^8.36)/(g2^5*g3) + (g1^3*g2*t^8.39)/g3 + (g1^3*g3*t^8.39)/g2 + 2*g2^4*t^8.43 - 2*g2^2*g3^2*t^8.43 + 2*g3^4*t^8.43 + 2*g1^3*g2^6*g3^4*t^8.46 + 2*g1^3*g2^4*g3^6*t^8.46 - g2^7*g3^7*t^8.5 + g1^3*g2^11*g3^9*t^8.53 + g1^3*g2^9*g3^11*t^8.53 + g1^6*g2^18*g3^18*t^8.63 + (2*t^8.76)/(g1^3*g2^16*g3^20) + (3*t^8.76)/(g1^3*g2^18*g3^18) + (2*t^8.76)/(g1^3*g2^20*g3^16) + t^8.8/(g2^12*g3^18) + t^8.8/(g2^14*g3^16) + t^8.8/(g2^16*g3^14) + t^8.8/(g2^18*g3^12) + t^8.83/(g1^3*g2^11*g3^15) + t^8.83/(g1^3*g2^13*g3^13) + t^8.83/(g1^3*g2^15*g3^11) + t^8.86/(g2^7*g3^13) + (3*t^8.86)/(g2^9*g3^11) + (3*t^8.86)/(g2^11*g3^9) + t^8.86/(g2^13*g3^7) - t^8.9/(g1^3*g2^6*g3^10) - (3*t^8.9)/(g1^3*g2^8*g3^8) - t^8.9/(g1^3*g2^10*g3^6) - (2*t^8.93)/(g2^4*g3^6) - (2*t^8.93)/(g2^6*g3^4) - (g2*g3*t^4.21)/y - (g2^2*g3^2*t^5.43)/y - t^6.57/(g2^2*g3^2*y) - (g2^3*g3^3*t^6.64)/y - t^7.15/(g2^3*g3^5*y) - t^7.15/(g2^5*g3^3*y) + t^7.79/(g2*g3*y) - (g2^4*g3^4*t^7.85)/y + t^8.29/(g2^7*g3^9*y) + t^8.29/(g2^9*g3^7*y) + t^8.36/(g2^2*g3^4*y) + t^8.36/(g2^4*g3^2*y) - (g2^3*g3*t^8.43)/y - (g2*g3^3*t^8.43)/y + t^8.86/(g2^10*g3^10*y) + t^8.93/(g2^3*g3^7*y) + (2*t^8.93)/(g2^5*g3^5*y) + t^8.93/(g2^7*g3^3*y) - g2*g3*t^4.21*y - g2^2*g3^2*t^5.43*y - (t^6.57*y)/(g2^2*g3^2) - g2^3*g3^3*t^6.64*y - (t^7.15*y)/(g2^3*g3^5) - (t^7.15*y)/(g2^5*g3^3) + (t^7.79*y)/(g2*g3) - g2^4*g3^4*t^7.85*y + (t^8.29*y)/(g2^7*g3^9) + (t^8.29*y)/(g2^9*g3^7) + (t^8.36*y)/(g2^2*g3^4) + (t^8.36*y)/(g2^4*g3^2) - g2^3*g3*t^8.43*y - g2*g3^3*t^8.43*y + (t^8.86*y)/(g2^10*g3^10) + (t^8.93*y)/(g2^3*g3^7) + (2*t^8.93*y)/(g2^5*g3^5) + (t^8.93*y)/(g2^7*g3^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57639 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ | 1.2512 | 1.4516 | 0.8619 | [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] | t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y | detail |