Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58556 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{5}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.1822 1.4197 0.8327 [X:[1.4], M:[0.8], q:[0.6296, 0.4852], qb:[0.3704, 0.1148], phi:[0.4]] [X:[[0]], M:[[0]], q:[[2], [-1]], qb:[[-2], [1]], phi:[[0]]] 1 {a: 3783/3200, c: 4543/3200, X1: 7/5, M1: 4/5, q1: 17/27, q2: 131/270, qb1: 10/27, qb2: 31/270, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{4}$ 4 t^2.23 + 2*t^2.4 + t^2.57 + 3*t^3. + t^3.43 + 2*t^3.77 + 4*t^4.2 + t^4.47 + 4*t^4.63 + 4*t^4.8 + 4*t^4.97 + t^5.13 + 2*t^5.23 + 8*t^5.4 + t^5.57 + t^5.67 + 2*t^5.83 + 4*t^6. + 5*t^6.17 + 2*t^6.33 + 5*t^6.43 + 6*t^6.6 + t^6.7 + 5*t^6.77 + 5*t^6.87 + t^6.93 + 6*t^7.03 + 16*t^7.2 + 6*t^7.37 + 2*t^7.47 + 6*t^7.53 + 13*t^7.63 + t^7.7 + 9*t^7.8 + t^7.9 + 12*t^7.97 + 4*t^8.07 + t^8.13 + t^8.23 + 22*t^8.4 + 5*t^8.57 + 4*t^8.67 + 7*t^8.73 + 16*t^8.83 + 2*t^8.9 + t^8.93 - t^4.2/y - t^5.4/y - t^6.43/y - (2*t^6.6)/y - t^6.77/y - t^7.2/y + t^7.63/y + t^7.8/y + t^7.97/y + (3*t^8.23)/y + (3*t^8.4)/y + (3*t^8.57)/y - t^8.83/y - t^4.2*y - t^5.4*y - t^6.43*y - 2*t^6.6*y - t^6.77*y - t^7.2*y + t^7.63*y + t^7.8*y + t^7.97*y + 3*t^8.23*y + 3*t^8.4*y + 3*t^8.57*y - t^8.83*y g1^3*t^2.23 + 2*t^2.4 + t^2.57/g1^3 + 3*t^3. + g1^3*t^3.43 + (2*t^3.77)/g1^3 + 4*t^4.2 + g1^6*t^4.47 + 4*g1^3*t^4.63 + 4*t^4.8 + (4*t^4.97)/g1^3 + t^5.13/g1^6 + 2*g1^3*t^5.23 + 8*t^5.4 + t^5.57/g1^3 + g1^6*t^5.67 + 2*g1^3*t^5.83 + 4*t^6. + (5*t^6.17)/g1^3 + (2*t^6.33)/g1^6 + 5*g1^3*t^6.43 + 6*t^6.6 + g1^9*t^6.7 + (5*t^6.77)/g1^3 + 5*g1^6*t^6.87 + t^6.93/g1^6 + 6*g1^3*t^7.03 + 16*t^7.2 + (6*t^7.37)/g1^3 + 2*g1^6*t^7.47 + (6*t^7.53)/g1^6 + 13*g1^3*t^7.63 + t^7.7/g1^9 + 9*t^7.8 + g1^9*t^7.9 + (12*t^7.97)/g1^3 + 4*g1^6*t^8.07 + t^8.13/g1^6 + g1^3*t^8.23 + 22*t^8.4 + (5*t^8.57)/g1^3 + 4*g1^6*t^8.67 + (7*t^8.73)/g1^6 + 16*g1^3*t^8.83 + (2*t^8.9)/g1^9 + g1^12*t^8.93 - t^4.2/y - t^5.4/y - (g1^3*t^6.43)/y - (2*t^6.6)/y - t^6.77/(g1^3*y) - t^7.2/y + (g1^3*t^7.63)/y + t^7.8/y + t^7.97/(g1^3*y) + (3*g1^3*t^8.23)/y + (3*t^8.4)/y + (3*t^8.57)/(g1^3*y) - (g1^3*t^8.83)/y - t^4.2*y - t^5.4*y - g1^3*t^6.43*y - 2*t^6.6*y - (t^6.77*y)/g1^3 - t^7.2*y + g1^3*t^7.63*y + t^7.8*y + (t^7.97*y)/g1^3 + 3*g1^3*t^8.23*y + 3*t^8.4*y + (3*t^8.57*y)/g1^3 - g1^3*t^8.83*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57402 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{5}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.1657 1.3907 0.8382 [X:[1.4], q:[0.6296, 0.4852], qb:[0.3704, 0.1148], phi:[0.4]] t^2.233 + t^2.4 + t^2.567 + 3*t^3. + t^3.433 + t^3.6 + 2*t^3.767 + 4*t^4.2 + t^4.467 + 3*t^4.633 + 2*t^4.8 + 3*t^4.967 + t^5.133 + 2*t^5.233 + 5*t^5.4 + t^5.567 + t^5.667 + 2*t^5.833 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 18651/16000, c: 22251/16000, X1: 7/5, q1: 17/27, q2: 131/270, qb1: 10/27, qb2: 31/270, phi1: 2/5}