Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58549 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.4542 | 1.6369 | 0.8884 | [X:[1.3816], M:[0.8938, 0.8938], q:[0.5426, 0.4749], qb:[0.5636, 0.5636], phi:[0.3092]] | [X:[[0, 6]], M:[[1, -17], [1, -17]], q:[[-1, 16], [1, 0]], qb:[[0, 1], [0, 1]], phi:[[0, -3]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}$ | -4 | 2*t^2.68 + t^2.78 + 2*t^3.12 + 2*t^4.04 + t^4.14 + 2*t^4.25 + 2*t^4.97 + 2*t^5.17 + 3*t^5.36 + t^5.4 + 2*t^5.46 + t^5.57 + t^5.61 + 3*t^5.8 + 2*t^5.9 - 4*t^6. - t^6.2 + 3*t^6.23 + t^6.33 + t^6.54 + 3*t^6.72 + 4*t^6.83 + 2*t^6.93 + 2*t^7.03 + t^7.06 - t^7.13 + 4*t^7.16 + 3*t^7.26 + 2*t^7.36 + t^7.46 + 3*t^7.65 + t^7.67 + t^7.75 + 4*t^7.86 + t^7.96 + 4*t^8.04 - t^8.06 + 7*t^8.09 + 3*t^8.15 + t^8.19 + 2*t^8.25 + 6*t^8.29 + t^8.35 + t^8.39 + 4*t^8.48 + t^8.49 + 2*t^8.52 + 3*t^8.58 - 8*t^8.68 + 2*t^8.72 - 3*t^8.78 - 4*t^8.88 + 4*t^8.91 - t^8.99 + t^8.78/y^2 - t^3.93/y - t^4.86/y - (2*t^6.61)/y - t^6.71/y - (2*t^7.04)/y - (2*t^7.54)/y - t^7.64/y - (2*t^7.97)/y + t^8.36/y + (2*t^8.46)/y + (4*t^8.8)/y - t^3.93*y - t^4.86*y - 2*t^6.61*y - t^6.71*y - 2*t^7.04*y - 2*t^7.54*y - t^7.64*y - 2*t^7.97*y + t^8.36*y + 2*t^8.46*y + 4*t^8.8*y + t^8.78*y^2 | (2*g1*t^2.68)/g2^17 + t^2.78/g2^9 + 2*g1*g2*t^3.12 + (2*g1*t^4.04)/g2^2 + g2^6*t^4.14 + (2*g2^14*t^4.25)/g1 + (2*g1*t^4.97)/g2^5 + (2*g2^11*t^5.17)/g1 + (3*g1^2*t^5.36)/g2^34 + g1*g2^13*t^5.4 + (2*g1*t^5.46)/g2^26 + t^5.57/g2^18 + (g2^29*t^5.61)/g1 + (3*g1^2*t^5.8)/g2^16 + (2*g1*t^5.9)/g2^8 - 4*t^6. - (g2^16*t^6.2)/g1^2 + 3*g1^2*g2^2*t^6.23 + g1*g2^10*t^6.33 + (g2^26*t^6.54)/g1 + (3*g1^2*t^6.72)/g2^19 + (4*g1*t^6.83)/g2^11 + (2*t^6.93)/g2^3 + (2*g2^5*t^7.03)/g1 + (g1^3*t^7.06)/g2^9 - (g2^13*t^7.13)/g1^2 + (4*g1^2*t^7.16)/g2 + 3*g1*g2^7*t^7.26 + 2*g2^15*t^7.36 + (g2^23*t^7.46)/g1 + (3*g1^2*t^7.65)/g2^22 + (g2^39*t^7.67)/g1^3 + (g1*t^7.75)/g2^14 + (4*t^7.86)/g2^6 + (g2^2*t^7.96)/g1 + (4*g1^3*t^8.04)/g2^51 - (g2^10*t^8.06)/g1^2 + (7*g1^2*t^8.09)/g2^4 + (3*g1^2*t^8.15)/g2^43 + g1*g2^4*t^8.19 + (2*g1*t^8.25)/g2^35 + 6*g2^12*t^8.29 + t^8.35/g2^27 + (g2^20*t^8.39)/g1 + (4*g1^3*t^8.48)/g2^33 + (g2^28*t^8.49)/g1^2 + 2*g1^2*g2^14*t^8.52 + (3*g1^2*t^8.58)/g2^25 - (8*g1*t^8.68)/g2^17 + 2*g2^30*t^8.72 - (3*t^8.78)/g2^9 - (4*t^8.88)/(g1*g2) + (4*g1^3*t^8.91)/g2^15 - (g2^7*t^8.99)/g1^2 + t^8.78/(g2^9*y^2) - t^3.93/(g2^3*y) - t^4.86/(g2^6*y) - (2*g1*t^6.61)/(g2^20*y) - t^6.71/(g2^12*y) - (2*g1*t^7.04)/(g2^2*y) - (2*g1*t^7.54)/(g2^23*y) - t^7.64/(g2^15*y) - (2*g1*t^7.97)/(g2^5*y) + (g1^2*t^8.36)/(g2^34*y) + (2*g1*t^8.46)/(g2^26*y) + (4*g1^2*t^8.8)/(g2^16*y) - (t^3.93*y)/g2^3 - (t^4.86*y)/g2^6 - (2*g1*t^6.61*y)/g2^20 - (t^6.71*y)/g2^12 - (2*g1*t^7.04*y)/g2^2 - (2*g1*t^7.54*y)/g2^23 - (t^7.64*y)/g2^15 - (2*g1*t^7.97*y)/g2^5 + (g1^2*t^8.36*y)/g2^34 + (2*g1*t^8.46*y)/g2^26 + (4*g1^2*t^8.8*y)/g2^16 + (t^8.78*y^2)/g2^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57392 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.446 | 1.6242 | 0.8902 | [X:[1.37], M:[0.9275], q:[0.5108, 0.476], qb:[0.5617, 0.5617], phi:[0.315]] | t^2.783 + t^2.835 + 2*t^3.113 + t^3.217 + 2*t^4.058 + t^4.11 + 2*t^4.162 + 2*t^5.003 + 2*t^5.107 + t^5.333 + t^5.438 + t^5.565 + t^5.618 + t^5.67 + t^5.896 + 2*t^5.948 - 3*t^6. - t^3.945/y - t^4.89/y - t^3.945*y - t^4.89*y | detail |