Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58545 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{3}$ 1.0833 1.2292 0.8814 [X:[1.3333, 1.3333, 1.3333], M:[], q:[1.0, 0.3333], qb:[0.3333, 0.3333], phi:[0.3333]] [X:[[0], [0], [0]], M:[], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 13/12, c: 59/48, X1: 4/3, X2: 4/3, X3: 4/3, q1: 1, q2: 1/3, qb1: 1/3, qb2: 1/3, phi1: 1/3}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }X_{2}$, ${ }X_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ 3 3*t^3. + 8*t^4. + 2*t^5. + 3*t^6. + 14*t^7. + 27*t^8. - t^4./y - t^5./y - t^7./y - (6*t^8.)/y - t^4.*y - t^5.*y - t^7.*y - 6*t^8.*y 3*t^3. + 8*t^4. + 2*t^5. + 3*t^6. + 14*t^7. + 27*t^8. - t^4./y - t^5./y - t^7./y - (6*t^8.)/y - t^4.*y - t^5.*y - t^7.*y - 6*t^8.*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57399 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.2292 1.3958 0.8806 [X:[1.3333, 1.3333], q:[0.7778, 0.4444], qb:[0.2222, 0.5556], phi:[0.3333]] 4*t^3. + 7*t^4. + 4*t^5. + 6*t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y detail {a: 59/48, c: 67/48, X1: 4/3, X2: 4/3, q1: 7/9, q2: 4/9, qb1: 2/9, qb2: 5/9, phi1: 1/3}