Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58544 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4437 1.6361 0.8824 [X:[1.3314], M:[0.9971, 0.9371], q:[0.4238, 0.4838], qb:[0.5791, 0.5074], phi:[0.3343]] [X:[[0, 4]], M:[[0, 6], [3, -19]], q:[[1, -7], [-2, 18]], qb:[[-1, 1], [2, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}^{2}q_{1}^{2}q_{2}$ -1 t^2.79 + t^2.81 + t^2.97 + t^2.99 + t^3.01 + t^3.8 + t^3.98 + t^3.99 + t^4.01 + t^4.19 + t^4.8 + t^4.98 + t^5. + t^5.01 + t^5.18 + t^5.19 + t^5.59 + t^5.6 + t^5.62 + t^5.77 + 2*t^5.78 + 2*t^5.8 + t^5.95 + t^5.96 + 2*t^5.98 - t^6. + t^6.02 - t^6.22 + t^6.59 + t^6.61 + 2*t^6.77 + 3*t^6.79 + 3*t^6.81 + t^6.82 + t^6.95 + 2*t^6.97 + 3*t^6.99 + 2*t^7. + t^7.02 + t^7.17 + t^7.18 - t^7.22 + t^7.36 + t^7.58 + 2*t^7.59 + t^7.61 + 3*t^7.77 + 3*t^7.79 + 2*t^7.81 + 2*t^7.95 + 3*t^7.97 + 4*t^7.99 + 2*t^8.01 + t^8.02 + t^8.15 + 2*t^8.17 + t^8.19 + t^8.38 + t^8.4 + t^8.42 + t^8.43 + t^8.56 + 2*t^8.58 + 3*t^8.6 + t^8.61 + t^8.74 + 2*t^8.76 + 4*t^8.78 + t^8.79 - t^8.81 + t^8.92 + t^8.94 + 3*t^8.96 + t^8.97 - t^4./y - t^5.01/y - t^6.8/y - t^6.81/y - t^6.98/y - t^6.99/y - t^7.01/y - t^7.8/y - t^7.82/y - t^7.98/y - t^8./y - t^8.01/y + t^8.6/y + t^8.77/y + (2*t^8.78)/y + t^8.8/y + t^8.82/y + t^8.96/y - t^4.*y - t^5.01*y - t^6.8*y - t^6.81*y - t^6.98*y - t^6.99*y - t^7.01*y - t^7.8*y - t^7.82*y - t^7.98*y - t^8.*y - t^8.01*y + t^8.6*y + t^8.77*y + 2*t^8.78*y + t^8.8*y + t^8.82*y + t^8.96*y (g1^3*t^2.79)/g2^7 + (g1^3*t^2.81)/g2^19 + g2^18*t^2.97 + g2^6*t^2.99 + t^3.01/g2^6 + (g1^3*t^3.8)/g2^9 + g2^16*t^3.98 + g2^4*t^3.99 + t^4.01/g2^8 + (g2^17*t^4.19)/g1^3 + (g1^3*t^4.8)/g2^11 + g2^14*t^4.98 + g2^2*t^5. + t^5.01/g2^10 + (g2^27*t^5.18)/g1^3 + (g2^15*t^5.19)/g1^3 + (g1^6*t^5.59)/g2^14 + (g1^6*t^5.6)/g2^26 + (g1^6*t^5.62)/g2^38 + g1^3*g2^11*t^5.77 + (2*g1^3*t^5.78)/g2 + (2*g1^3*t^5.8)/g2^13 + g2^36*t^5.95 + g2^24*t^5.96 + 2*g2^12*t^5.98 - t^6. + t^6.02/g2^12 - (g2*t^6.22)/g1^3 + (g1^6*t^6.59)/g2^16 + (g1^6*t^6.61)/g2^28 + 2*g1^3*g2^9*t^6.77 + (3*g1^3*t^6.79)/g2^3 + (3*g1^3*t^6.81)/g2^15 + (g1^3*t^6.82)/g2^27 + g2^34*t^6.95 + 2*g2^22*t^6.97 + 3*g2^10*t^6.99 + (2*t^7.)/g2^2 + t^7.02/g2^14 + (g2^35*t^7.17)/g1^3 + (g2^23*t^7.18)/g1^3 - t^7.22/(g1^3*g2) + (g2^48*t^7.36)/g1^6 + (g1^6*t^7.58)/g2^6 + (2*g1^6*t^7.59)/g2^18 + (g1^6*t^7.61)/g2^30 + 3*g1^3*g2^7*t^7.77 + (3*g1^3*t^7.79)/g2^5 + (2*g1^3*t^7.81)/g2^17 + 2*g2^32*t^7.95 + 3*g2^20*t^7.97 + 4*g2^8*t^7.99 + (2*t^8.01)/g2^4 + t^8.02/g2^16 + (g2^45*t^8.15)/g1^3 + (2*g2^33*t^8.17)/g1^3 + (g2^21*t^8.19)/g1^3 + (g1^9*t^8.38)/g2^21 + (g1^9*t^8.4)/g2^33 + (g1^9*t^8.42)/g2^45 + (g1^9*t^8.43)/g2^57 + g1^6*g2^4*t^8.56 + (2*g1^6*t^8.58)/g2^8 + (3*g1^6*t^8.6)/g2^20 + (g1^6*t^8.61)/g2^32 + g1^3*g2^29*t^8.74 + 2*g1^3*g2^17*t^8.76 + 4*g1^3*g2^5*t^8.78 + (g1^3*t^8.79)/g2^7 - (g1^3*t^8.81)/g2^19 + g2^54*t^8.92 + g2^42*t^8.94 + 3*g2^30*t^8.96 + g2^18*t^8.97 - t^4./(g2^2*y) - t^5.01/(g2^4*y) - (g1^3*t^6.8)/(g2^9*y) - (g1^3*t^6.81)/(g2^21*y) - (g2^16*t^6.98)/y - (g2^4*t^6.99)/y - t^7.01/(g2^8*y) - (g1^3*t^7.8)/(g2^11*y) - (g1^3*t^7.82)/(g2^23*y) - (g2^14*t^7.98)/y - (g2^2*t^8.)/y - t^8.01/(g2^10*y) + (g1^6*t^8.6)/(g2^26*y) + (g1^3*g2^11*t^8.77)/y + (2*g1^3*t^8.78)/(g2*y) + (g1^3*t^8.8)/(g2^13*y) + (g1^3*t^8.82)/(g2^25*y) + (g2^24*t^8.96)/y - (t^4.*y)/g2^2 - (t^5.01*y)/g2^4 - (g1^3*t^6.8*y)/g2^9 - (g1^3*t^6.81*y)/g2^21 - g2^16*t^6.98*y - g2^4*t^6.99*y - (t^7.01*y)/g2^8 - (g1^3*t^7.8*y)/g2^11 - (g1^3*t^7.82*y)/g2^23 - g2^14*t^7.98*y - g2^2*t^8.*y - (t^8.01*y)/g2^10 + (g1^6*t^8.6*y)/g2^26 + g1^3*g2^11*t^8.77*y + (2*g1^3*t^8.78*y)/g2 + (g1^3*t^8.8*y)/g2^13 + (g1^3*t^8.82*y)/g2^25 + g2^24*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57397 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4575 1.6436 0.8867 [X:[1.3723], M:[0.894, 0.894], q:[0.5122, 0.5122], qb:[0.5938, 0.4986], phi:[0.3139]] 2*t^2.682 + t^2.825 + 2*t^3.032 + 2*t^3.974 + t^4.117 + 2*t^4.26 + 2*t^4.916 + 2*t^5.201 + 3*t^5.364 + 2*t^5.507 + 2*t^5.552 + t^5.65 + 4*t^5.714 + 2*t^5.857 - 5*t^6. - t^3.942/y - t^4.883/y - t^3.942*y - t^4.883*y detail