Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58541 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4673 1.6726 0.8773 [X:[1.3501], M:[0.9167, 1.0251, 0.6733], q:[0.4977, 0.4629], qb:[0.5855, 0.504], phi:[0.325]] [X:[[0, 0, 4]], M:[[1, 2, -12], [0, 0, 6], [1, -1, -9]], q:[[-1, -1, 11], [1, 0, 0]], qb:[[0, -1, 1], [0, 2, 0]], phi:[[0, 0, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$ ${}$ -3 t^2.02 + t^2.75 + t^2.9 + t^3.01 + t^3.08 + t^3.15 + t^3.88 + t^4.04 + t^4.05 + t^4.12 + t^4.22 + t^4.77 + t^4.85 + t^4.92 + t^4.96 + t^5.03 + 2*t^5.1 + t^5.17 + t^5.2 + t^5.25 + t^5.35 + t^5.5 + t^5.65 + t^5.76 + t^5.8 + t^5.83 + t^5.9 + t^5.91 + t^5.98 - 3*t^6. + t^6.01 + t^6.05 + t^6.06 + t^6.07 + t^6.08 - t^6.1 + t^6.14 + 2*t^6.15 + 2*t^6.22 + t^6.29 + t^6.32 + t^6.63 + t^6.78 + t^6.79 + t^6.8 + t^6.87 + t^6.88 + t^6.94 + 2*t^6.95 + 2*t^7.02 + t^7.04 + t^7.06 - t^7.08 + t^7.09 + 2*t^7.12 + 2*t^7.13 + t^7.19 + 3*t^7.2 + t^7.23 + 2*t^7.27 + 2*t^7.3 + t^7.37 + t^7.4 + t^7.46 + t^7.52 + t^7.6 + t^7.67 + t^7.71 + 2*t^7.75 + t^7.82 + t^7.85 + 2*t^7.86 - t^7.88 + t^7.92 + 2*t^7.93 + t^7.96 + 4*t^8. - 3*t^8.02 + t^8.03 - t^8.05 + t^8.07 + t^8.08 + t^8.09 + 4*t^8.1 - t^8.12 + t^8.15 + t^8.16 + 3*t^8.17 + 3*t^8.24 + 3*t^8.25 + t^8.27 + t^8.31 + t^8.32 + t^8.34 + t^8.36 + t^8.39 + t^8.4 + t^8.43 + t^8.5 + t^8.55 + t^8.58 - t^8.61 + t^8.65 + t^8.66 + t^8.7 + 2*t^8.73 - 4*t^8.75 + t^8.76 + t^8.8 + 2*t^8.81 + t^8.82 + 2*t^8.83 - 2*t^8.85 + t^8.88 + t^8.89 - t^8.9 + t^8.91 + t^8.92 + t^8.95 + t^8.96 + 4*t^8.97 + t^8.98 - 3*t^8.99 + t^8.92/y^2 - t^8.99/y^2 - t^3.97/y - t^4.95/y - t^5.99/y - t^6.73/y - t^6.88/y - t^6.97/y - t^6.98/y - t^7.05/y - t^7.12/y - t^7.7/y + t^7.77/y - t^7.85/y + t^7.92/y - t^8.01/y + t^8.17/y + t^8.65/y - t^8.75/y + t^8.76/y + t^8.9/y + t^8.91/y + t^8.98/y - t^8.99/y - t^3.97*y - t^4.95*y - t^5.99*y - t^6.73*y - t^6.88*y - t^6.97*y - t^6.98*y - t^7.05*y - t^7.12*y - t^7.7*y + t^7.77*y - t^7.85*y + t^7.92*y - t^8.01*y + t^8.17*y + t^8.65*y - t^8.75*y + t^8.76*y + t^8.9*y + t^8.91*y + t^8.98*y - t^8.99*y + t^8.92*y^2 - t^8.99*y^2 (g1*t^2.02)/(g2*g3^9) + (g1*g2^2*t^2.75)/g3^12 + g1*g2^2*t^2.9 + (g2*g3^11*t^3.01)/g1 + g3^6*t^3.08 + (g1*g3*t^3.15)/g2 + (g1*g2^2*t^3.88)/g3^2 + (g1^2*t^4.04)/(g2^2*g3^18) + g3^4*t^4.05 + (g1*t^4.12)/(g2*g3) + (g3^10*t^4.22)/(g1*g2^2) + (g1^2*g2*t^4.77)/g3^21 + (g1*g2^2*t^4.85)/g3^4 + (g1^2*g2*t^4.92)/g3^9 + (g2*g3^7*t^4.96)/g1 + g3^2*t^5.03 + (2*g1*t^5.1)/(g2*g3^3) + (g1^2*t^5.17)/(g2^2*g3^8) + (g3^8*t^5.2)/(g1*g2^2) + (g1*g3^9*t^5.25)/g2 + (g3^20*t^5.35)/(g1*g2^2) + (g1^2*g2^4*t^5.5)/g3^24 + (g1^2*g2^4*t^5.65)/g3^12 + (g2^3*t^5.76)/g3 + g1^2*g2^4*t^5.8 + (g1*g2^2*t^5.83)/g3^6 + (g1^2*g2*t^5.9)/g3^11 + g2^3*g3^11*t^5.91 + g1*g2^2*g3^6*t^5.98 - 3*t^6. + (g2^2*g3^22*t^6.01)/g1^2 + g1^2*g2*g3*t^6.05 + (g1^3*t^6.06)/(g2^3*g3^27) + (g1*t^6.07)/(g2*g3^5) + (g2*g3^17*t^6.08)/g1 - (g3^11*t^6.1)/(g1^2*g2) + (g1^2*t^6.14)/(g2^2*g3^10) + 2*g3^12*t^6.15 + (2*g1*g3^7*t^6.22)/g2 + (g1^2*g3^2*t^6.29)/g2^2 + (g3^18*t^6.32)/(g1*g2^2) + (g1^2*g2^4*t^6.63)/g3^14 + (g1^2*g2^4*t^6.78)/g3^2 + (g1^3*t^6.79)/g3^30 + (g1*g2^2*t^6.8)/g3^8 + (g1^2*g2*t^6.87)/g3^13 + g2^3*g3^9*t^6.88 + (g1^3*t^6.94)/g3^18 + 2*g1*g2^2*g3^4*t^6.95 + (2*g1^2*g2*t^7.02)/g3 + (g1*t^7.04)/(g2*g3^7) + (g2*g3^15*t^7.06)/g1 - (g3^9*t^7.08)/(g1^2*g2) + (g1^3*t^7.09)/g3^6 + (2*g1^2*t^7.12)/(g2^2*g3^12) + 2*g3^10*t^7.13 + (g1^3*t^7.19)/(g2^3*g3^17) + (3*g1*g3^5*t^7.2)/g2 + (g3^21*t^7.23)/(g1^2*g2) + (2*g1^2*t^7.27)/g2^2 + (2*g3^16*t^7.3)/(g1*g2^2) + (g3^11*t^7.37)/g2^3 + (g3^27*t^7.4)/(g1^3*g2^3) + (g2^6*t^7.46)/g3^6 + (g1^3*g2^3*t^7.52)/g3^33 + (g1^2*g2^4*t^7.6)/g3^16 + (g1^3*g2^3*t^7.67)/g3^21 + (g2^3*t^7.71)/g3^5 + (2*g1^2*g2^4*t^7.75)/g3^4 + (g1^3*g2^3*t^7.82)/g3^9 + (g1^2*g2*t^7.85)/g3^15 + 2*g2^3*g3^7*t^7.86 - (g2*g3*t^7.88)/g1 + (g1^3*t^7.92)/g3^20 + 2*g1*g2^2*g3^2*t^7.93 + (g2^2*g3^18*t^7.96)/g1^2 + (4*g1^2*g2*t^8.)/g3^3 - (3*g1*t^8.02)/(g2*g3^9) + (g2*g3^13*t^8.03)/g1 - (g3^7*t^8.05)/(g1^2*g2) + (g1^3*t^8.07)/g3^8 + (g1^4*t^8.08)/(g2^4*g3^36) + (g1^2*t^8.09)/(g2^2*g3^14) + 4*g3^8*t^8.1 - (g3^2*t^8.12)/(g1*g2^2) + g1^2*g2*g3^9*t^8.15 + (g1^3*t^8.16)/(g2^3*g3^19) + (3*g1*g3^3*t^8.17)/g2 + (3*g1^2*t^8.24)/(g2^2*g3^2) + (g1^3*g2^6*t^8.25)/g3^36 + 2*g3^20*t^8.25 + (g3^14*t^8.27)/(g1*g2^2) + (g1^3*t^8.31)/(g2^3*g3^7) + (g1*g3^15*t^8.32)/g2 + (g3^9*t^8.34)/g2^3 + (g3^31*t^8.36)/(g1^2*g2) + (g1^2*g3^10*t^8.39)/g2^2 + (g1^3*g2^6*t^8.4)/g3^24 + (g3^26*t^8.43)/(g1*g2^2) + (g3^21*t^8.5)/g2^3 + (g1^3*g2^6*t^8.55)/g3^12 + (g1^2*g2^4*t^8.58)/g3^18 - (g2^4*t^8.61)/(g1*g3^2) + (g1^3*g2^3*t^8.65)/g3^23 + (g1*g2^5*t^8.66)/g3 + g1^3*g2^6*t^8.7 + (2*g1^2*g2^4*t^8.73)/g3^6 - (4*g1*g2^2*t^8.75)/g3^12 + (g2^4*g3^10*t^8.76)/g1 + (g1^3*g2^3*t^8.8)/g3^11 + (g1^4*t^8.81)/(g2*g3^39) + g1*g2^5*g3^11*t^8.81 + (g1^2*g2*t^8.82)/g3^17 + 2*g2^3*g3^5*t^8.83 - (2*g2*t^8.85)/(g1*g3) + g1^2*g2^4*g3^6*t^8.88 + (g1^3*t^8.89)/g3^22 - g1*g2^2*t^8.9 + (g2^4*g3^22*t^8.91)/g1 + t^8.92/g3^6 + g1^3*g2^3*g3*t^8.95 + (g1^4*t^8.96)/(g2*g3^27) + (4*g1^2*g2*t^8.97)/g3^5 + g2^3*g3^17*t^8.98 - (3*g1*t^8.99)/(g2*g3^11) + t^8.92/(g3^6*y^2) - (g1*t^8.99)/(g2*g3^11*y^2) - t^3.97/(g3^2*y) - t^4.95/(g3^4*y) - (g1*t^5.99)/(g2*g3^11*y) - (g1*g2^2*t^6.73)/(g3^14*y) - (g1*g2^2*t^6.88)/(g3^2*y) - (g1*t^6.97)/(g2*g3^13*y) - (g2*g3^9*t^6.98)/(g1*y) - (g3^4*t^7.05)/y - (g1*t^7.12)/(g2*g3*y) - (g1*g2^2*t^7.7)/(g3^16*y) + (g1^2*g2*t^7.77)/(g3^21*y) - (g1*g2^2*t^7.85)/(g3^4*y) + (g1^2*g2*t^7.92)/(g3^9*y) - (g1^2*t^8.01)/(g2^2*g3^20*y) + (g1^2*t^8.17)/(g2^2*g3^8*y) + (g1^2*g2^4*t^8.65)/(g3^12*y) - (g1^2*g2*t^8.75)/(g3^23*y) + (g2^3*t^8.76)/(g3*y) + (g1^2*g2*t^8.9)/(g3^11*y) + (g2^3*g3^11*t^8.91)/y + (g1*g2^2*g3^6*t^8.98)/y - (g1^2*t^8.99)/(g2^2*g3^22*y) - (t^3.97*y)/g3^2 - (t^4.95*y)/g3^4 - (g1*t^5.99*y)/(g2*g3^11) - (g1*g2^2*t^6.73*y)/g3^14 - (g1*g2^2*t^6.88*y)/g3^2 - (g1*t^6.97*y)/(g2*g3^13) - (g2*g3^9*t^6.98*y)/g1 - g3^4*t^7.05*y - (g1*t^7.12*y)/(g2*g3) - (g1*g2^2*t^7.7*y)/g3^16 + (g1^2*g2*t^7.77*y)/g3^21 - (g1*g2^2*t^7.85*y)/g3^4 + (g1^2*g2*t^7.92*y)/g3^9 - (g1^2*t^8.01*y)/(g2^2*g3^20) + (g1^2*t^8.17*y)/(g2^2*g3^8) + (g1^2*g2^4*t^8.65*y)/g3^12 - (g1^2*g2*t^8.75*y)/g3^23 + (g2^3*t^8.76*y)/g3 + (g1^2*g2*t^8.9*y)/g3^11 + g2^3*g3^11*t^8.91*y + g1*g2^2*g3^6*t^8.98*y - (g1^2*t^8.99*y)/(g2^2*g3^22) + (t^8.92*y^2)/g3^6 - (g1*t^8.99*y^2)/(g2*g3^11)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57395 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4465 1.6315 0.8866 [X:[1.3496], M:[0.9174, 1.0244], q:[0.4967, 0.4632], qb:[0.586, 0.5029], phi:[0.3252]] t^2.752 + t^2.898 + t^2.999 + t^3.073 + t^3.148 + t^3.874 + t^3.974 + t^4.049 + t^4.123 + t^4.224 + t^4.85 + t^4.95 + t^5.099 + t^5.199 + t^5.245 + t^5.345 + t^5.504 + t^5.65 + t^5.751 + t^5.797 + t^5.825 + t^5.897 + t^5.971 + t^5.997 - 3*t^6. - t^3.976/y - t^4.951/y - t^3.976*y - t^4.951*y detail