Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58540 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 1.4494 | 1.632 | 0.8881 | [X:[1.366], M:[0.8965, 1.049, 0.9369], q:[0.529, 0.4605], qb:[0.5745, 0.5341], phi:[0.317]] | [X:[[0, 0, 4]], M:[[1, 2, -12], [0, 0, 6], [1, -1, -11]], q:[[-1, -1, 11], [1, 0, 0]], qb:[[0, -1, 1], [0, 2, 0]], phi:[[0, 0, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -3 | t^2.69 + t^2.81 + t^2.98 + t^3.11 + t^3.15 + t^3.93 + t^4.06 + t^4.1 + t^4.14 + t^4.26 + t^4.89 + t^5.01 + t^5.09 + t^5.21 + t^5.3 + t^5.38 + t^5.5 + t^5.51 + t^5.62 + t^5.67 + t^5.79 + t^5.84 + t^5.92 + t^5.96 + t^5.97 - 3*t^6. + t^6.09 - t^6.12 + t^6.13 + 2*t^6.25 + t^6.29 + t^6.46 + t^6.62 + t^6.75 + t^6.79 + t^6.83 + t^6.87 + t^6.91 + t^6.92 + t^7. + 2*t^7.04 + 2*t^7.08 + t^7.12 + 3*t^7.2 + 2*t^7.25 + t^7.29 + 2*t^7.41 + t^7.58 + t^7.61 + t^7.66 + t^7.7 - t^7.74 + t^7.78 + t^7.82 + 2*t^7.87 + t^7.9 - t^7.94 + 3*t^7.99 + t^8.02 + t^8.03 + t^8.07 + 2*t^8.08 + t^8.11 + t^8.15 + t^8.19 + 3*t^8.2 + t^8.24 + t^8.28 + t^8.29 + t^8.31 + t^8.32 + 2*t^8.36 + t^8.41 + t^8.43 + t^8.45 + t^8.48 + t^8.49 + t^8.53 - t^8.57 + 2*t^8.61 + 2*t^8.65 + t^8.66 - 4*t^8.69 + t^8.73 + t^8.78 - 4*t^8.81 + 2*t^8.82 + t^8.85 - 2*t^8.89 + t^8.9 - t^8.93 + 3*t^8.94 + t^8.95 - 2*t^8.98 + t^8.85/y^2 - t^3.95/y - t^4.9/y - t^6.64/y - t^6.76/y - t^6.93/y - t^7.06/y - t^7.1/y - t^7.59/y - t^7.71/y - t^7.89/y - t^8.01/y - t^8.05/y + t^8.5/y + t^8.67/y + (2*t^8.79)/y + t^8.92/y - t^3.95*y - t^4.9*y - t^6.64*y - t^6.76*y - t^6.93*y - t^7.06*y - t^7.1*y - t^7.59*y - t^7.71*y - t^7.89*y - t^8.01*y - t^8.05*y + t^8.5*y + t^8.67*y + 2*t^8.79*y + t^8.92*y + t^8.85*y^2 | (g1*g2^2*t^2.69)/g3^12 + (g1*t^2.81)/(g2*g3^11) + g1*g2^2*t^2.98 + (g1*g3*t^3.11)/g2 + g3^6*t^3.15 + (g1*g2^2*t^3.93)/g3^2 + (g1*t^4.06)/(g2*g3) + g3^4*t^4.1 + (g2*g3^9*t^4.14)/g1 + (g3^10*t^4.26)/(g1*g2^2) + (g1*g2^2*t^4.89)/g3^4 + (g1*t^5.01)/(g2*g3^3) + (g2*g3^7*t^5.09)/g1 + (g3^8*t^5.21)/(g1*g2^2) + (g1*g3^9*t^5.3)/g2 + (g1^2*g2^4*t^5.38)/g3^24 + (g1^2*g2*t^5.5)/g3^23 + (g3^20*t^5.51)/(g1*g2^2) + (g1^2*t^5.62)/(g2^2*g3^22) + (g1^2*g2^4*t^5.67)/g3^12 + (g1^2*g2*t^5.79)/g3^11 + (g1*g2^2*t^5.84)/g3^6 + (g1^2*t^5.92)/(g2^2*g3^10) + (g1*t^5.96)/(g2*g3^5) + g1^2*g2^4*t^5.97 - 3*t^6. + g1^2*g2*g3*t^6.09 - (g3*t^6.12)/g2^3 + g1*g2^2*g3^6*t^6.13 + (g1^2*g3^2*t^6.21)/g2^2 - (g3^11*t^6.21)/(g1^2*g2) + (2*g1*g3^7*t^6.25)/g2 + g3^12*t^6.29 + (g3^18*t^6.46)/(g1*g2^2) + (g1^2*g2^4*t^6.62)/g3^14 + (g1^2*g2*t^6.75)/g3^13 + (g1*g2^2*t^6.79)/g3^8 + (g2^3*t^6.83)/g3^3 + (g1^2*t^6.87)/(g2^2*g3^12) + (g1*t^6.91)/(g2*g3^7) + (g1^2*g2^4*t^6.92)/g3^2 + (g1^3*t^7.)/g3^6 + (2*g1^2*g2*t^7.04)/g3 + 2*g1*g2^2*g3^4*t^7.08 + g2^3*g3^9*t^7.12 + (g1^2*t^7.16)/g2^2 - (g3^9*t^7.16)/(g1^2*g2) + (3*g1*g3^5*t^7.2)/g2 + 2*g3^10*t^7.25 + (g2*g3^15*t^7.29)/g1 + (2*g3^16*t^7.41)/(g1*g2^2) + (g1^2*g2^4*t^7.58)/g3^16 + (g3^27*t^7.61)/(g1^3*g2^3) + (g2^6*t^7.66)/g3^6 + (g1^2*g2*t^7.7)/g3^15 - (g1*g2^2*t^7.74)/g3^10 + (g2^3*t^7.78)/g3^5 + (g1^2*t^7.82)/(g2^2*g3^14) + (2*g1^2*g2^4*t^7.87)/g3^4 + t^7.9/g3^4 - (g2*g3*t^7.94)/g1 + (3*g1^2*g2*t^7.99)/g3^3 + t^8.02/(g2^3*g3^3) + g1*g2^2*g3^2*t^8.03 + (g1^3*g2^6*t^8.07)/g3^36 + 2*g2^3*g3^7*t^8.08 + (2*g1^2*t^8.11)/(g2^2*g3^2) - (g3^7*t^8.11)/(g1^2*g2) + (g1*g3^3*t^8.15)/g2 + (g1^3*g2^3*t^8.19)/g3^35 + 3*g3^8*t^8.2 + (g2*g3^13*t^8.24)/g1 + (g2^2*g3^18*t^8.28)/g1^2 + g1^2*g2*g3^9*t^8.29 + (g1^3*t^8.31)/g3^34 + (g3^9*t^8.32)/g2^3 + (g1^3*g2^6*t^8.36)/g3^24 + (g3^14*t^8.36)/(g1*g2^2) + (g1^2*g3^10*t^8.41)/g2^2 + (g1^3*t^8.43)/(g2^3*g3^33) + (g1*g3^15*t^8.45)/g2 + (g1^3*g2^3*t^8.48)/g3^23 + g3^20*t^8.49 + (g1^2*g2^4*t^8.53)/g3^18 - (g1*g2^5*t^8.57)/g3^13 + (g1^3*t^8.61)/g3^22 + (g3^21*t^8.61)/g2^3 + (g1^2*g2*t^8.65)/g3^17 + (g3^26*t^8.65)/(g1*g2^2) + (g1^3*g2^6*t^8.66)/g3^12 - (4*g1*g2^2*t^8.69)/g3^12 + (g1^3*t^8.73)/(g2^3*g3^21) + (g1^2*t^8.77)/(g2^2*g3^16) - (g2^4*t^8.77)/(g1*g3^2) + (g1^3*g2^3*t^8.78)/g3^11 - (4*g1*t^8.81)/(g2*g3^11) + (2*g1^2*g2^4*t^8.82)/g3^6 + t^8.85/g3^6 - (2*g2*t^8.89)/(g1*g3) + (g1^3*t^8.9)/g3^10 - (g1*t^8.93)/(g2^4*g3^10) + (3*g1^2*g2*t^8.94)/g3^5 + g1^3*g2^6*t^8.95 - 2*g1*g2^2*t^8.98 + t^8.85/(g3^6*y^2) - t^3.95/(g3^2*y) - t^4.9/(g3^4*y) - (g1*g2^2*t^6.64)/(g3^14*y) - (g1*t^6.76)/(g2*g3^13*y) - (g1*g2^2*t^6.93)/(g3^2*y) - (g1*t^7.06)/(g2*g3*y) - (g3^4*t^7.1)/y - (g1*g2^2*t^7.59)/(g3^16*y) - (g1*t^7.71)/(g2*g3^15*y) - (g1*g2^2*t^7.89)/(g3^4*y) - (g1*t^8.01)/(g2*g3^3*y) - (g3^2*t^8.05)/y + (g1^2*g2*t^8.5)/(g3^23*y) + (g1^2*g2^4*t^8.67)/(g3^12*y) + (2*g1^2*g2*t^8.79)/(g3^11*y) + (g1^2*t^8.92)/(g2^2*g3^10*y) - (t^3.95*y)/g3^2 - (t^4.9*y)/g3^4 - (g1*g2^2*t^6.64*y)/g3^14 - (g1*t^6.76*y)/(g2*g3^13) - (g1*g2^2*t^6.93*y)/g3^2 - (g1*t^7.06*y)/(g2*g3) - g3^4*t^7.1*y - (g1*g2^2*t^7.59*y)/g3^16 - (g1*t^7.71*y)/(g2*g3^15) - (g1*g2^2*t^7.89*y)/g3^4 - (g1*t^8.01*y)/(g2*g3^3) - g3^2*t^8.05*y + (g1^2*g2*t^8.5*y)/g3^23 + (g1^2*g2^4*t^8.67*y)/g3^12 + (2*g1^2*g2*t^8.79*y)/g3^11 + (g1^2*t^8.92*y)/(g2^2*g3^10) + (t^8.85*y^2)/g3^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57395 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4465 | 1.6315 | 0.8866 | [X:[1.3496], M:[0.9174, 1.0244], q:[0.4967, 0.4632], qb:[0.586, 0.5029], phi:[0.3252]] | t^2.752 + t^2.898 + t^2.999 + t^3.073 + t^3.148 + t^3.874 + t^3.974 + t^4.049 + t^4.123 + t^4.224 + t^4.85 + t^4.95 + t^5.099 + t^5.199 + t^5.245 + t^5.345 + t^5.504 + t^5.65 + t^5.751 + t^5.797 + t^5.825 + t^5.897 + t^5.971 + t^5.997 - 3*t^6. - t^3.976/y - t^4.951/y - t^3.976*y - t^4.951*y | detail |