Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58529 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.453 | 1.6398 | 0.8861 | [X:[1.3592], M:[0.9087, 0.9087, 1.0388], q:[0.4964, 0.4964], qb:[0.5949, 0.4898], phi:[0.3204]] | [X:[[0, 0, 4]], M:[[1, 2, -12], [-1, 1, -1], [0, 0, 6]], q:[[-1, -1, 11], [1, 0, 0]], qb:[[0, -1, 1], [0, 2, 0]], phi:[[0, 0, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -5 | 2*t^2.73 + 2*t^2.96 + t^3.12 + 2*t^3.92 + t^4.08 + 2*t^4.24 + 2*t^4.88 + 2*t^5.2 + 2*t^5.43 + 3*t^5.45 + 4*t^5.68 + 2*t^5.84 + 3*t^5.92 - 5*t^6. + 2*t^6.08 + t^6.23 - t^6.32 + 2*t^6.39 + 4*t^6.65 + 2*t^6.8 + 4*t^6.88 + 4*t^7.04 + 4*t^7.19 - t^7.28 + t^7.29 + 6*t^7.35 - t^7.51 + 4*t^7.61 - 2*t^7.76 + 7*t^7.84 + t^7.92 + 2*t^8. + 8*t^8.16 + 4*t^8.18 + 2*t^8.31 + 4*t^8.39 + 4*t^8.41 - t^8.47 + 2*t^8.55 + 3*t^8.57 + 6*t^8.64 - 12*t^8.73 + 8*t^8.8 + 5*t^8.88 - 8*t^8.96 + t^8.88/y^2 - t^3.96/y - t^4.92/y - (2*t^6.69)/y - (2*t^6.92)/y - t^7.08/y - (2*t^7.65)/y - (2*t^7.88)/y - t^8.04/y + t^8.45/y + (4*t^8.68)/y + t^8.92/y - t^3.96*y - t^4.92*y - 2*t^6.69*y - 2*t^6.92*y - t^7.08*y - 2*t^7.65*y - 2*t^7.88*y - t^8.04*y + t^8.45*y + 4*t^8.68*y + t^8.92*y + t^8.88*y^2 | (g1*g2^2*t^2.73)/g3^12 + (g2*t^2.73)/(g1*g3) + g1*g2^2*t^2.96 + (g2*g3^11*t^2.96)/g1 + g3^6*t^3.12 + (g1*g2^2*t^3.92)/g3^2 + (g2*g3^9*t^3.92)/g1 + g3^4*t^4.08 + (g1*t^4.24)/(g2*g3) + (g3^10*t^4.24)/(g1*g2^2) + (g1*g2^2*t^4.88)/g3^4 + (g2*g3^7*t^4.88)/g1 + (g1*t^5.2)/(g2*g3^3) + (g3^8*t^5.2)/(g1*g2^2) + (g1*g3^9*t^5.43)/g2 + (g3^20*t^5.43)/(g1*g2^2) + (g1^2*g2^4*t^5.45)/g3^24 + (g2^3*t^5.45)/g3^13 + (g2^2*t^5.45)/(g1^2*g3^2) + (g1^2*g2^4*t^5.68)/g3^12 + (2*g2^3*t^5.68)/g3 + (g2^2*g3^10*t^5.68)/g1^2 + (g1*g2^2*t^5.84)/g3^6 + (g2*g3^5*t^5.84)/g1 + g1^2*g2^4*t^5.92 + g2^3*g3^11*t^5.92 + (g2^2*g3^22*t^5.92)/g1^2 - 3*t^6. - (g1^2*g2*t^6.)/g3^11 - (g3^11*t^6.)/(g1^2*g2) + g1*g2^2*g3^6*t^6.08 + (g2*g3^17*t^6.08)/g1 + g3^12*t^6.23 - (g3*t^6.32)/g2^3 + (g1*g3^7*t^6.39)/g2 + (g3^18*t^6.39)/(g1*g2^2) + (g1^2*g2^4*t^6.65)/g3^14 + (2*g2^3*t^6.65)/g3^3 + (g2^2*g3^8*t^6.65)/g1^2 + (g1*g2^2*t^6.8)/g3^8 + (g2*g3^3*t^6.8)/g1 + (g1^2*g2^4*t^6.88)/g3^2 + 2*g2^3*g3^9*t^6.88 + (g2^2*g3^20*t^6.88)/g1^2 + 2*g1*g2^2*g3^4*t^7.04 + (2*g2*g3^15*t^7.04)/g1 + (g1^2*g2*t^7.19)/g3 + 2*g3^10*t^7.19 + (g3^21*t^7.19)/(g1^2*g2) - t^7.28/(g2^3*g3) + (g2^6*t^7.29)/g3^6 + (g1^3*t^7.35)/g3^6 + (2*g1*g3^5*t^7.35)/g2 + (2*g3^16*t^7.35)/(g1*g2^2) + (g3^27*t^7.35)/(g1^3*g2^3) - (g3^11*t^7.51)/g2^3 + (g1^2*g2^4*t^7.61)/g3^16 + (2*g2^3*t^7.61)/g3^5 + (g2^2*g3^6*t^7.61)/g1^2 - (g1*g2^2*t^7.76)/g3^10 - (g2*g3*t^7.76)/g1 + (2*g1^2*g2^4*t^7.84)/g3^4 + 3*g2^3*g3^7*t^7.84 + (2*g2^2*g3^18*t^7.84)/g1^2 + t^7.92/g3^4 + g1*g2^2*g3^2*t^8. + (g2*g3^13*t^8.)/g1 + (2*g1^2*g2*t^8.16)/g3^3 + 4*g3^8*t^8.16 + (2*g3^19*t^8.16)/(g1^2*g2) + (g1^3*g2^6*t^8.18)/g3^36 + (g1*g2^5*t^8.18)/g3^25 + (g2^4*t^8.18)/(g1*g3^14) + (g2^3*t^8.18)/(g1^3*g3^3) + (g1*g3^3*t^8.31)/g2 + (g3^14*t^8.31)/(g1*g2^2) + g1^2*g2*g3^9*t^8.39 + 2*g3^20*t^8.39 + (g3^31*t^8.39)/(g1^2*g2) + (g1^3*g2^6*t^8.41)/g3^24 + (g1*g2^5*t^8.41)/g3^13 + (g2^4*t^8.41)/(g1*g3^2) + (g2^3*g3^9*t^8.41)/g1^3 - (g3^9*t^8.47)/g2^3 + (g1*g3^15*t^8.55)/g2 + (g3^26*t^8.55)/(g1*g2^2) + (g1^2*g2^4*t^8.57)/g3^18 + (g2^3*t^8.57)/g3^7 + (g2^2*g3^4*t^8.57)/g1^2 + (g1^3*g2^6*t^8.64)/g3^12 + (2*g1*g2^5*t^8.64)/g3 + (2*g2^4*g3^10*t^8.64)/g1 + (g2^3*g3^21*t^8.64)/g1^3 - (g1^3*g2^3*t^8.73)/g3^23 - (5*g1*g2^2*t^8.73)/g3^12 - (5*g2*t^8.73)/(g1*g3) - (g3^10*t^8.73)/g1^3 + (2*g1^2*g2^4*t^8.8)/g3^6 + 4*g2^3*g3^5*t^8.8 + (2*g2^2*g3^16*t^8.8)/g1^2 + g1^3*g2^6*t^8.88 + t^8.88/g3^6 + g1*g2^5*g3^11*t^8.88 + (g2^4*g3^22*t^8.88)/g1 + (g2^3*g3^33*t^8.88)/g1^3 - 3*g1*g2^2*t^8.96 - (g1^3*g2^3*t^8.96)/g3^11 - (3*g2*g3^11*t^8.96)/g1 - (g3^22*t^8.96)/g1^3 + t^8.88/(g3^6*y^2) - t^3.96/(g3^2*y) - t^4.92/(g3^4*y) - (g1*g2^2*t^6.69)/(g3^14*y) - (g2*t^6.69)/(g1*g3^3*y) - (g1*g2^2*t^6.92)/(g3^2*y) - (g2*g3^9*t^6.92)/(g1*y) - (g3^4*t^7.08)/y - (g1*g2^2*t^7.65)/(g3^16*y) - (g2*t^7.65)/(g1*g3^5*y) - (g1*g2^2*t^7.88)/(g3^4*y) - (g2*g3^7*t^7.88)/(g1*y) - (g3^2*t^8.04)/y + (g2^3*t^8.45)/(g3^13*y) + (g1^2*g2^4*t^8.68)/(g3^12*y) + (2*g2^3*t^8.68)/(g3*y) + (g2^2*g3^10*t^8.68)/(g1^2*y) + (g2^3*g3^11*t^8.92)/y - (t^3.96*y)/g3^2 - (t^4.92*y)/g3^4 - (g1*g2^2*t^6.69*y)/g3^14 - (g2*t^6.69*y)/(g1*g3^3) - (g1*g2^2*t^6.92*y)/g3^2 - (g2*g3^9*t^6.92*y)/g1 - g3^4*t^7.08*y - (g1*g2^2*t^7.65*y)/g3^16 - (g2*t^7.65*y)/(g1*g3^5) - (g1*g2^2*t^7.88*y)/g3^4 - (g2*g3^7*t^7.88*y)/g1 - g3^2*t^8.04*y + (g2^3*t^8.45*y)/g3^13 + (g1^2*g2^4*t^8.68*y)/g3^12 + (2*g2^3*t^8.68*y)/g3 + (g2^2*g3^10*t^8.68*y)/g1^2 + g2^3*g3^11*t^8.92*y + (t^8.88*y^2)/g3^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57397 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4575 | 1.6436 | 0.8867 | [X:[1.3723], M:[0.894, 0.894], q:[0.5122, 0.5122], qb:[0.5938, 0.4986], phi:[0.3139]] | 2*t^2.682 + t^2.825 + 2*t^3.032 + 2*t^3.974 + t^4.117 + 2*t^4.26 + 2*t^4.916 + 2*t^5.201 + 3*t^5.364 + 2*t^5.507 + 2*t^5.552 + t^5.65 + 4*t^5.714 + 2*t^5.857 - 5*t^6. - t^3.942/y - t^4.883/y - t^3.942*y - t^4.883*y | detail |