Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
585 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ 0.7183 0.8774 0.8187 [M:[1.0, 0.8187, 1.0, 0.8187, 1.0906], q:[0.4547, 0.5453], qb:[0.5453, 0.6359], phi:[0.4547]] [M:[[1, -1], [-1, -3], [-1, 1], [1, -5], [0, 2]], q:[[0, -1], [-1, 2]], qb:[[1, 0], [0, 3]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$ ${}M_{1}^{2}$, ${ }M_{3}^{2}$ -3 2*t^2.456 + 2*t^3. + 3*t^3.272 + t^4.092 + 2*t^4.364 + 4*t^4.636 + 2*t^4.908 + 3*t^4.912 + t^5.18 + 3*t^5.456 + 2*t^5.728 - 3*t^6. + 2*t^6.272 + 4*t^6.544 + 2*t^6.548 + 3*t^6.82 + 6*t^7.092 + 4*t^7.364 + 4*t^7.369 + 6*t^7.636 + 6*t^7.908 + 4*t^7.912 + 2*t^8.18 + 3*t^8.184 + t^8.452 - 4*t^8.456 + 2*t^8.728 - t^4.364/y - (2*t^6.82)/y + (2*t^7.908)/y + t^7.912/y + (4*t^8.456)/y + (6*t^8.728)/y - t^4.364*y - 2*t^6.82*y + 2*t^7.908*y + t^7.912*y + 4*t^8.456*y + 6*t^8.728*y (g1*t^2.456)/g2^5 + t^2.456/(g1*g2^3) + (g1*t^3.)/g2 + (g2*t^3.)/g1 + 3*g2^2*t^3.272 + t^4.092/g2^3 + t^4.364/g1 + (g1*t^4.364)/g2^2 + (g1^2*t^4.636)/g2 + 2*g2*t^4.636 + (g2^3*t^4.636)/g1^2 + g1*g2^2*t^4.908 + (g2^4*t^4.908)/g1 + (g1^2*t^4.912)/g2^10 + t^4.912/g2^8 + t^4.912/(g1^2*g2^6) + g2^5*t^5.18 + (g1^2*t^5.456)/g2^6 + t^5.456/g2^4 + t^5.456/(g1^2*g2^2) + (g1*t^5.728)/g2^3 + t^5.728/(g1*g2) - 3*t^6. + g1*g2*t^6.272 + (g2^3*t^6.272)/g1 + 4*g2^4*t^6.544 + (g1*t^6.548)/g2^8 + t^6.548/(g1*g2^6) + (g1^2*t^6.82)/g2^7 + t^6.82/g2^5 + t^6.82/(g1^2*g2^3) + t^7.092/g1^3 + (g1^3*t^7.092)/g2^6 + (2*g1*t^7.092)/g2^4 + (2*t^7.092)/(g1*g2^2) + (g1^2*t^7.364)/g2^3 + (2*t^7.364)/g2 + (g2*t^7.364)/g1^2 + (g1^3*t^7.369)/g2^15 + (g1*t^7.369)/g2^13 + t^7.369/(g1*g2^11) + t^7.369/(g1^3*g2^9) + 2*g1*t^7.636 + (g1^3*t^7.636)/g2^2 + (2*g2^2*t^7.636)/g1 + (g2^4*t^7.636)/g1^3 + 2*g1^2*g2*t^7.908 + 2*g2^3*t^7.908 + (2*g2^5*t^7.908)/g1^2 + (g1^3*t^7.912)/g2^11 + (g1*t^7.912)/g2^9 + t^7.912/(g1*g2^7) + t^7.912/(g1^3*g2^5) + g1*g2^4*t^8.18 + (g2^6*t^8.18)/g1 + (g1^2*t^8.184)/g2^8 + t^8.184/g2^6 + t^8.184/(g1^2*g2^4) + g2^7*t^8.452 - (2*g1*t^8.456)/g2^5 - (2*t^8.456)/(g1*g2^3) + t^8.728/g1^2 + (g1^2*t^8.728)/g2^4 - t^4.364/(g2*y) - (g1*t^6.82)/(g2^6*y) - t^6.82/(g1*g2^4*y) + (g1*g2^2*t^7.908)/y + (g2^4*t^7.908)/(g1*y) + t^7.912/(g2^8*y) + (g1^2*t^8.456)/(g2^6*y) + (2*t^8.456)/(g2^4*y) + t^8.456/(g1^2*g2^2*y) + (3*g1*t^8.728)/(g2^3*y) + (3*t^8.728)/(g1*g2*y) - (t^4.364*y)/g2 - (g1*t^6.82*y)/g2^6 - (t^6.82*y)/(g1*g2^4) + g1*g2^2*t^7.908*y + (g2^4*t^7.908*y)/g1 + (t^7.912*y)/g2^8 + (g1^2*t^8.456*y)/g2^6 + (2*t^8.456*y)/g2^4 + (t^8.456*y)/(g1^2*g2^2) + (3*g1*t^8.728*y)/g2^3 + (3*t^8.728*y)/(g1*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1921 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ 0.6022 0.7272 0.8281 [X:[1.6128], M:[0.8384, 0.7104, 1.1616, 0.3872, 1.2256], q:[0.3872, 0.7744], qb:[0.4512, 0.8384], phi:[0.3872]] t^2.131 + t^2.515 + 2*t^3.485 + 4*t^3.677 + t^3.869 + t^4.263 + t^4.646 + t^4.838 + t^5.03 + 2*t^5.616 + 2*t^5.808 - 2*t^6. - t^4.162/y - t^4.162*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
367 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ 0.7271 0.893 0.8142 [M:[1.0, 0.7947, 1.0, 0.7947], q:[0.4487, 0.5513], qb:[0.5513, 0.654], phi:[0.4487]] 2*t^2.384 + t^2.692 + 2*t^3. + 2*t^3.308 + t^4.038 + 2*t^4.346 + 4*t^4.654 + 3*t^4.768 + 2*t^4.962 + 2*t^5.076 + t^5.27 + 4*t^5.384 + 2*t^5.692 - t^6. - t^4.346/y - t^4.346*y detail