Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58469 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4408 1.6837 0.8557 [X:[1.2502], M:[0.9993, 0.8753, 0.7372], q:[0.4934, 0.3805], qb:[0.5074, 0.3693], phi:[0.3749]] [X:[[0, 0, 2]], M:[[0, 0, -8], [0, 0, 3], [-1, 1, 3]], q:[[-1, 0, 8], [0, -1, -2]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}X_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}X_{1}$ -1 t^2.21 + t^2.25 + t^2.59 + t^2.63 + t^2.66 + t^3. + t^3.37 + t^3.71 + t^3.75 + t^4.13 + t^4.42 + t^4.46 + 2*t^4.5 + t^4.8 + 3*t^4.84 + t^4.86 + 2*t^4.88 + t^4.89 + 2*t^4.91 + t^5.18 + 2*t^5.21 + t^5.23 + 4*t^5.25 + t^5.28 + t^5.29 + t^5.33 + t^5.59 + 2*t^5.62 + t^5.92 + 3*t^5.96 + t^5.99 - t^6. + t^6.01 + t^6.04 + t^6.3 + 2*t^6.34 + t^6.35 + t^6.37 + 3*t^6.38 + t^6.4 + t^6.63 + t^6.67 + t^6.7 + 3*t^6.71 + 5*t^6.75 + t^6.8 + t^7.01 + 3*t^7.05 + t^7.07 + 6*t^7.09 + 2*t^7.11 + 2*t^7.12 + 2*t^7.14 - t^7.15 + 3*t^7.16 + t^7.39 + t^7.42 + 4*t^7.43 + t^7.44 + t^7.45 + 5*t^7.46 + 3*t^7.48 + t^7.49 + 9*t^7.5 + 3*t^7.53 + t^7.54 + t^7.55 + 2*t^7.58 + t^7.76 + 2*t^7.8 + 2*t^7.81 + 6*t^7.84 + t^7.85 + t^7.86 + 3*t^7.87 + 3*t^7.88 + t^7.89 + t^7.9 + 3*t^7.92 + 2*t^7.94 + t^7.95 + t^7.99 + t^8.14 + 3*t^8.17 + 3*t^8.21 + 2*t^8.24 + 2*t^8.26 - t^8.27 + 2*t^8.29 - t^8.3 + t^8.51 + 5*t^8.55 + 3*t^8.58 + 3*t^8.6 + 2*t^8.62 + 3*t^8.63 - t^8.64 + 2*t^8.65 - 4*t^8.66 + t^8.68 - t^8.69 + t^8.7 + t^8.85 + t^8.88 + t^8.89 + t^8.91 + 2*t^8.92 + 2*t^8.93 + 2*t^8.94 + t^8.95 + 10*t^8.96 + 3*t^8.99 - t^4.12/y - t^5.25/y - t^6.34/y - t^6.37/y - t^6.71/y - t^6.75/y - t^6.79/y - t^7.12/y - t^7.5/y + t^7.8/y + t^7.84/y + t^7.88/y + t^7.91/y + (2*t^8.21)/y + t^8.25/y + t^8.29/y - t^8.55/y + t^8.59/y + t^8.66/y - t^4.12*y - t^5.25*y - t^6.34*y - t^6.37*y - t^6.71*y - t^6.75*y - t^6.79*y - t^7.12*y - t^7.5*y + t^7.8*y + t^7.84*y + t^7.88*y + t^7.91*y + 2*t^8.21*y + t^8.25*y + t^8.29*y - t^8.55*y + t^8.59*y + t^8.66*y (g2*g3^3*t^2.21)/g1 + t^2.25/g3^2 + (g2*g3^8*t^2.59)/g1 + g3^3*t^2.63 + (g1*t^2.66)/(g2*g3^2) + t^3./g3^8 + t^3.37/g3^3 + (g2*g3^7*t^3.71)/g1 + g3^2*t^3.75 + g3^7*t^4.13 + (g2^2*g3^6*t^4.42)/g1^2 + (g2*g3*t^4.46)/g1 + (2*t^4.5)/g3^4 + (g2^2*g3^11*t^4.8)/g1^2 + (3*g2*g3^6*t^4.84)/g1 + (g1*g2^2*t^4.86)/g3 + 2*g3*t^4.88 + (g3^3*t^4.89)/(g1*g2^2) + (2*g1*t^4.91)/(g2*g3^4) + (g2^2*g3^16*t^5.18)/g1^2 + (g2*t^5.21)/(g1*g3^5) + (g2*g3^11*t^5.21)/g1 + (g3^13*t^5.23)/(g1^2*g2) + t^5.25/g3^10 + 3*g3^6*t^5.25 + (g1^2*g2*t^5.28)/g3 + (g1*g3*t^5.29)/g2 + (g1^2*t^5.33)/(g2^2*g3^4) + (g2*t^5.59)/g1 + (2*t^5.62)/g3^5 + (g2^2*g3^10*t^5.92)/g1^2 + (3*g2*g3^5*t^5.96)/g1 + (g1*g2^2*t^5.99)/g3^2 - 2*t^6. + t^6./g3^16 + (g3^2*t^6.01)/(g1*g2^2) + (g1*t^6.04)/(g2*g3^5) + (g2^2*g3^15*t^6.3)/g1^2 + (2*g2*g3^10*t^6.34)/g1 + (g3^12*t^6.35)/(g1^2*g2) + t^6.37/g3^11 + 3*g3^5*t^6.38 + (g1^2*g2*t^6.4)/g3^2 + (g2^3*g3^9*t^6.63)/g1^3 + (g2^2*g3^4*t^6.67)/g1^2 + (g2^3*t^6.7)/g3^3 + (2*g2*t^6.71)/(g1*g3) + (g2*g3^15*t^6.71)/g1 + (4*t^6.75)/g3^6 + g3^10*t^6.75 - (g1*t^6.79)/(g2*g3^11) + (g1*g3^5*t^6.79)/g2 + t^6.8/(g2^3*g3^9) + (g2^3*g3^14*t^7.01)/g1^3 + (3*g2^2*g3^9*t^7.05)/g1^2 + g2^3*g3^2*t^7.07 + (6*g2*g3^4*t^7.09)/g1 + (2*g1*g2^2*t^7.11)/g3^3 + (2*t^7.12)/g3 + (2*g3*t^7.14)/(g1*g2^2) - (g1^2*g2*t^7.15)/g3^8 + (3*g1*t^7.16)/(g2*g3^6) + (g2^3*g3^19*t^7.39)/g1^3 + (g2^2*t^7.42)/(g1^2*g3^2) + (4*g2^2*g3^14*t^7.43)/g1^2 + (g3^16*t^7.44)/g1^3 + g2^3*g3^7*t^7.45 + (g2*t^7.46)/(g1*g3^7) + (4*g2*g3^9*t^7.46)/g1 + (3*g3^11*t^7.48)/(g1^2*g2) + g1*g2^2*g3^2*t^7.49 + (2*t^7.5)/g3^12 + 7*g3^4*t^7.5 + (3*g1^2*g2*t^7.53)/g3^3 + (g1*t^7.54)/(g2*g3) + (g3*t^7.55)/g2^3 + (2*g1^2*t^7.58)/(g2^2*g3^6) + (g2^3*g3^24*t^7.76)/g1^3 + (g2^2*g3^3*t^7.8)/g1^2 + (g2^2*g3^19*t^7.8)/g1^2 + (2*g3^21*t^7.81)/g1^3 + (2*g2*t^7.84)/(g1*g3^2) + (4*g2*g3^14*t^7.84)/g1 + (g3^16*t^7.85)/(g1^2*g2) + g1*g2^2*g3^7*t^7.86 + (3*t^7.87)/g3^7 + 3*g3^9*t^7.88 + (g3^11*t^7.89)/(g1*g2^2) + g1^2*g2*g3^2*t^7.9 + (3*g1*g3^4*t^7.92)/g2 + (2*g1^3*t^7.94)/g3^3 + (g1^2*t^7.95)/(g2^2*g3) + (g1^3*t^7.99)/(g2^3*g3^6) + (g2^3*g3^13*t^8.14)/g1^3 + (3*g2^2*g3^8*t^8.17)/g1^2 + (g2*t^8.21)/(g1*g3^13) + (2*g2*g3^3*t^8.21)/g1 + (2*g1*g2^2*t^8.24)/g3^4 + t^8.25/g3^18 - (2*t^8.25)/g3^2 + g3^14*t^8.25 + (2*t^8.26)/(g1*g2^2) - (g1^2*g2*t^8.27)/g3^9 + (2*g1*t^8.29)/(g2*g3^7) - t^8.3/(g2^3*g3^5) + (g2^3*g3^18*t^8.51)/g1^3 + (5*g2^2*g3^13*t^8.55)/g1^2 + (g2*t^8.58)/(g1*g3^8) + 2*g2^3*g3^6*t^8.58 + (3*g3^10*t^8.6)/(g1^2*g2) + (2*t^8.62)/g3^13 + 3*g3^3*t^8.63 - (g3^5*t^8.64)/(g1*g2^2) + (2*g1^2*g2*t^8.65)/g3^4 - (4*g1*t^8.66)/(g2*g3^2) + t^8.68/g2^3 - (g1^3*t^8.69)/g3^9 + (g1^2*t^8.7)/(g2^2*g3^7) + (g2^4*g3^12*t^8.85)/g1^4 + (g2^3*g3^7*t^8.88)/g1^3 + (g2^3*g3^23*t^8.89)/g1^3 + (g2^4*t^8.91)/g1 + (2*g2^2*g3^2*t^8.92)/g1^2 + (2*g2^2*g3^18*t^8.93)/g1^2 + (2*g3^20*t^8.94)/g1^3 + (g2^3*t^8.95)/g3^5 + (4*g2*t^8.96)/(g1*g3^3) + (6*g2*g3^13*t^8.96)/g1 + t^8.99/g3^24 + 2*g1*g2^2*g3^6*t^8.99 - t^4.12/(g3*y) - t^5.25/(g3^2*y) - (g2*g3^2*t^6.34)/(g1*y) - t^6.37/(g3^3*y) - (g2*g3^7*t^6.71)/(g1*y) - (g3^2*t^6.75)/y - (g1*t^6.79)/(g2*g3^3*y) - t^7.12/(g3^9*y) - t^7.5/(g3^4*y) + (g2^2*g3^11*t^7.8)/(g1^2*y) + (g2*g3^6*t^7.84)/(g1*y) + (g3*t^7.88)/y + (g1*t^7.91)/(g2*g3^4*y) + (g2*t^8.21)/(g1*g3^5*y) + (g2*g3^11*t^8.21)/(g1*y) + (g3^6*t^8.25)/y + (g1*g3*t^8.29)/(g2*y) - (g2^2*g3^5*t^8.55)/(g1^2*y) + (g2*t^8.59)/(g1*y) + (g1*t^8.66)/(g2*g3^10*y) - (t^4.12*y)/g3 - (t^5.25*y)/g3^2 - (g2*g3^2*t^6.34*y)/g1 - (t^6.37*y)/g3^3 - (g2*g3^7*t^6.71*y)/g1 - g3^2*t^6.75*y - (g1*t^6.79*y)/(g2*g3^3) - (t^7.12*y)/g3^9 - (t^7.5*y)/g3^4 + (g2^2*g3^11*t^7.8*y)/g1^2 + (g2*g3^6*t^7.84*y)/g1 + g3*t^7.88*y + (g1*t^7.91*y)/(g2*g3^4) + (g2*t^8.21*y)/(g1*g3^5) + (g2*g3^11*t^8.21*y)/g1 + g3^6*t^8.25*y + (g1*g3*t^8.29*y)/g2 - (g2^2*g3^5*t^8.55*y)/g1^2 + (g2*t^8.59*y)/g1 + (g1*t^8.66*y)/(g2*g3^10)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57370 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4215 1.6483 0.8624 [X:[1.2487], M:[1.0053, 0.873], q:[0.4974, 0.3757], qb:[0.4974, 0.3757], phi:[0.3757]] t^2.254 + 3*t^2.619 + t^3.016 + t^3.381 + 3*t^3.746 + t^4.111 + 2*t^4.508 + 7*t^4.873 + 9*t^5.238 + t^5.27 + 2*t^5.635 + 4*t^6. - t^4.127/y - t^5.254/y - t^4.127*y - t^5.254*y detail