Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58454 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ 1.3576 1.5534 0.8739 [X:[1.3903], M:[0.829, 0.6952], q:[0.4188, 0.6382], qb:[0.7522, 0.3618], phi:[0.3048]] [X:[[0, 2]], M:[[0, -6], [0, 1]], q:[[-1, 4], [-1, 0]], qb:[[1, 2], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ 1 t^2.09 + t^2.34 + t^2.49 + t^2.74 + t^3. + t^3.26 + 4*t^4.17 + 2*t^4.43 + t^4.57 + t^4.68 + 2*t^4.83 + t^4.97 + 3*t^5.09 + t^5.23 + 4*t^5.34 + 2*t^5.49 + t^5.6 + t^5.74 + t^6. + 6*t^6.26 + 8*t^6.51 + 2*t^6.66 + 2*t^6.77 + 3*t^6.91 + t^7.03 + t^7.06 + 6*t^7.17 + 2*t^7.32 + 9*t^7.43 + t^7.46 + 3*t^7.57 + 5*t^7.68 + t^7.72 + 3*t^7.83 + t^7.94 + 2*t^7.97 - t^8.09 + 2*t^8.23 + 12*t^8.34 + t^8.49 + 14*t^8.6 + 4*t^8.74 + 9*t^8.85 + t^8.74/y^2 - t^3.91/y - t^4.83/y - t^6./y - t^6.26/y - t^6.4/y - t^6.66/y - (2*t^6.91)/y - t^7.17/y - t^7.32/y + t^7.43/y + (2*t^7.83)/y - t^8.09/y + t^8.23/y + t^8.34/y + t^8.74/y - t^8.89/y - t^3.91*y - t^4.83*y - t^6.*y - t^6.26*y - t^6.4*y - t^6.66*y - 2*t^6.91*y - t^7.17*y - t^7.32*y + t^7.43*y + 2*t^7.83*y - t^8.09*y + t^8.23*y + t^8.34*y + t^8.74*y - t^8.89*y + t^8.74*y^2 g2*t^2.09 + g2^4*t^2.34 + t^2.49/g2^6 + t^2.74/g2^3 + t^3. + g2^3*t^3.26 + 4*g2^2*t^4.17 + 2*g2^5*t^4.43 + t^4.57/g2^5 + g2^8*t^4.68 + (2*t^4.83)/g2^2 + t^4.97/g2^12 + 3*g2*t^5.09 + t^5.23/g2^9 + g1^3*g2*t^5.34 + 2*g2^4*t^5.34 + (g2^7*t^5.34)/g1^3 + (2*t^5.49)/g2^6 + g2^7*t^5.6 + t^5.74/g2^3 - t^6. + (g1^3*t^6.)/g2^3 + (g2^3*t^6.)/g1^3 + g1^3*t^6.26 + 4*g2^3*t^6.26 + (g2^6*t^6.26)/g1^3 + g1^3*g2^3*t^6.51 + 6*g2^6*t^6.51 + (g2^9*t^6.51)/g1^3 + (2*t^6.66)/g2^4 + 2*g2^9*t^6.77 + (3*t^6.91)/g2 + g2^12*t^7.03 + t^7.06/g2^11 + 6*g2^2*t^7.17 + (2*t^7.32)/g2^8 + g1^3*g2^2*t^7.43 + 7*g2^5*t^7.43 + (g2^8*t^7.43)/g1^3 + t^7.46/g2^18 + (3*t^7.57)/g2^5 + g1^3*g2^5*t^7.68 + 3*g2^8*t^7.68 + (g2^11*t^7.68)/g1^3 + t^7.72/g2^15 + (3*t^7.83)/g2^2 + g2^11*t^7.94 + (2*t^7.97)/g2^12 - g2*t^8.09 + (2*t^8.23)/g2^9 + 2*g1^3*g2*t^8.34 + 8*g2^4*t^8.34 + (2*g2^7*t^8.34)/g1^3 + (g1^3*t^8.49)/g2^9 - t^8.49/g2^6 + t^8.49/(g1^3*g2^3) + 3*g1^3*g2^4*t^8.6 + 8*g2^7*t^8.6 + (3*g2^10*t^8.6)/g1^3 + t^8.74/g1^3 + (g1^3*t^8.74)/g2^6 + (2*t^8.74)/g2^3 + g1^3*g2^7*t^8.85 + 7*g2^10*t^8.85 + (g2^13*t^8.85)/g1^3 + t^8.74/(g2^3*y^2) - t^3.91/(g2*y) - t^4.83/(g2^2*y) - t^6./y - (g2^3*t^6.26)/y - t^6.4/(g2^7*y) - t^6.66/(g2^4*y) - (2*t^6.91)/(g2*y) - (g2^2*t^7.17)/y - t^7.32/(g2^8*y) + (g2^5*t^7.43)/y + (2*t^7.83)/(g2^2*y) - (g2*t^8.09)/y + t^8.23/(g2^9*y) + (g2^4*t^8.34)/y + t^8.74/(g2^3*y) - t^8.89/(g2^13*y) - (t^3.91*y)/g2 - (t^4.83*y)/g2^2 - t^6.*y - g2^3*t^6.26*y - (t^6.4*y)/g2^7 - (t^6.66*y)/g2^4 - (2*t^6.91*y)/g2 - g2^2*t^7.17*y - (t^7.32*y)/g2^8 + g2^5*t^7.43*y + (2*t^7.83*y)/g2^2 - g2*t^8.09*y + (t^8.23*y)/g2^9 + g2^4*t^8.34*y + (t^8.74*y)/g2^3 - (t^8.89*y)/g2^13 + (t^8.74*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57374 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4756 1.6805 0.8781 [X:[1.3492], M:[0.9524, 0.6746], q:[0.5238, 0.5], qb:[0.5238, 0.5], phi:[0.3254]] t^2.024 + t^2.857 + t^2.929 + t^3. + 2*t^3.071 + 4*t^4.048 + t^4.119 + t^4.881 + 2*t^4.952 + 3*t^5.024 + 3*t^5.095 + 2*t^5.548 + 2*t^5.619 + t^5.715 + t^5.786 + 2*t^5.857 + t^5.929 - t^6. - t^3.976/y - t^4.952/y - t^6./y - t^3.976*y - t^4.952*y - t^6.*y detail