Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58445 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ 1.379 1.5966 0.8637 [X:[1.291], M:[0.9365, 0.8361], q:[0.6591, 0.3046], qb:[0.4045, 0.5048], phi:[0.3545]] [X:[[0, 2]], M:[[0, 3], [0, -8]], q:[[-1, 8], [-1, 9]], qb:[[1, -11], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$ ${}q_{2}\tilde{q}_{1}X_{1}$ -1 t^2.13 + t^2.43 + t^2.51 + t^2.81 + 2*t^3.19 + t^3.49 + t^3.87 + 3*t^4.25 + 3*t^4.56 + t^4.64 + t^4.86 + t^4.87 + t^4.94 + t^5. + t^5.02 + t^5.24 + t^5.31 + 4*t^5.32 + 5*t^5.62 + t^5.7 + t^5.92 + 3*t^5.93 - t^6. + t^6.07 + t^6.3 + t^6.37 + 7*t^6.38 + 8*t^6.68 - t^6.75 + 2*t^6.76 + t^6.83 + 4*t^6.98 + 3*t^7. + t^7.06 + 2*t^7.13 + t^7.14 + t^7.28 + t^7.3 + 2*t^7.36 - t^7.38 + 3*t^7.43 + 8*t^7.44 + t^7.53 + t^7.67 - t^7.68 + 2*t^7.73 + 12*t^7.75 - t^7.81 + 2*t^7.83 + 7*t^8.05 + 6*t^8.06 - 2*t^8.13 + 3*t^8.2 + t^8.21 + t^8.35 + 4*t^8.36 - t^8.43 + 4*t^8.5 + 10*t^8.51 - t^8.58 + t^8.73 - t^8.74 + 2*t^8.8 + 15*t^8.81 - 3*t^8.88 + 4*t^8.89 + t^8.96 - t^4.06/y - t^5.13/y - t^6.19/y - t^6.49/y - t^6.57/y - t^6.87/y - (2*t^7.25)/y + t^7.94/y + t^8.24/y + t^8.62/y + t^8.7/y - t^4.06*y - t^5.13*y - t^6.19*y - t^6.49*y - t^6.57*y - t^6.87*y - 2*t^7.25*y + t^7.94*y + t^8.24*y + t^8.62*y + t^8.7*y t^2.13/g2^2 + g2^9*t^2.43 + t^2.51/g2^8 + g2^3*t^2.81 + (2*t^3.19)/g2^3 + g2^8*t^3.49 + g2^2*t^3.87 + (3*t^4.25)/g2^4 + 3*g2^7*t^4.56 + t^4.64/g2^10 + g2^18*t^4.86 + (g2^25*t^4.87)/g1^3 + g2*t^4.94 + (g1^3*t^5.)/g2^23 + t^5.02/g2^16 + g2^12*t^5.24 + (g1^3*t^5.31)/g2^12 + (4*t^5.32)/g2^5 + 5*g2^6*t^5.62 + t^5.7/g2^11 + g2^17*t^5.92 + (3*g2^24*t^5.93)/g1^3 - t^6. + (g1^3*t^6.07)/g2^24 + g2^11*t^6.3 + (g1^3*t^6.37)/g2^13 + (7*t^6.38)/g2^6 + 8*g2^5*t^6.68 - (g1^3*t^6.75)/g2^19 + (2*t^6.76)/g2^12 + (g1^3*t^6.83)/g2^36 + 4*g2^16*t^6.98 + (3*g2^23*t^7.)/g1^3 + t^7.06/g2 + (2*g1^3*t^7.13)/g2^25 + t^7.14/g2^18 + g2^27*t^7.28 + (g2^34*t^7.3)/g1^3 + 2*g2^10*t^7.36 - (g2^17*t^7.38)/g1^3 + (3*g1^3*t^7.43)/g2^14 + (8*t^7.44)/g2^7 + t^7.53/g2^24 + g2^21*t^7.67 - (g2^28*t^7.68)/g1^3 + (2*g1^3*t^7.73)/g2^3 + 12*g2^4*t^7.75 - (g1^3*t^7.81)/g2^20 + (2*t^7.83)/g2^13 + 7*g2^15*t^8.05 + (6*g2^22*t^8.06)/g1^3 - (2*t^8.13)/g2^2 + (3*g1^3*t^8.2)/g2^26 + t^8.21/g2^19 + g2^26*t^8.35 + (4*g2^33*t^8.36)/g1^3 - g2^9*t^8.43 + (4*g1^3*t^8.5)/g2^15 + (10*t^8.51)/g2^8 - (g1^3*t^8.58)/g2^32 + g2^20*t^8.73 - (g2^27*t^8.74)/g1^3 + (2*g1^3*t^8.8)/g2^4 + 15*g2^3*t^8.81 - (3*g1^3*t^8.88)/g2^21 + (4*t^8.89)/g2^14 + (g1^3*t^8.96)/g2^38 - t^4.06/(g2*y) - t^5.13/(g2^2*y) - t^6.19/(g2^3*y) - (g2^8*t^6.49)/y - t^6.57/(g2^9*y) - (g2^2*t^6.87)/y - (2*t^7.25)/(g2^4*y) + (g2*t^7.94)/y + (g2^12*t^8.24)/y + (g2^6*t^8.62)/y + t^8.7/(g2^11*y) - (t^4.06*y)/g2 - (t^5.13*y)/g2^2 - (t^6.19*y)/g2^3 - g2^8*t^6.49*y - (t^6.57*y)/g2^9 - g2^2*t^6.87*y - (2*t^7.25*y)/g2^4 + g2*t^7.94*y + g2^12*t^8.24*y + g2^6*t^8.62*y + (t^8.7*y)/g2^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57373 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4745 1.684 0.8756 [X:[1.328], M:[0.9919, 0.6882], q:[0.504, 0.4879], qb:[0.504, 0.4879], phi:[0.336]] t^2.065 + t^2.927 + 3*t^2.976 + t^3.024 + 3*t^3.984 + t^4.032 + t^4.129 + t^4.943 + 3*t^4.992 + 4*t^5.04 + t^5.089 + 2*t^5.448 + 2*t^5.496 + t^5.855 + 3*t^5.903 + 5*t^5.952 - t^6. - t^4.008/y - t^5.016/y - t^4.008*y - t^5.016*y detail