Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58439 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4586 1.6514 0.8833 [X:[1.4048], M:[0.8095, 0.6786], q:[0.5952, 0.5119], qb:[0.5952, 0.5119], phi:[0.2976]] [X:[[0, 4]], M:[[0, 8], [0, -18]], q:[[1, -9], [-2, 20]], qb:[[-1, 1], [2, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ 0 t^2.04 + t^2.43 + t^2.68 + t^3.07 + 2*t^3.32 + t^4.07 + 3*t^4.21 + 2*t^4.46 + t^4.71 + 2*t^4.86 + 4*t^5.11 + 4*t^5.36 + t^5.5 + 3*t^5.75 + t^6.11 + t^6.14 + t^6.25 + 2*t^6.39 + 2*t^6.5 + 6*t^6.64 + t^6.75 + 5*t^6.89 + 3*t^7.14 + 7*t^7.29 + 4*t^7.39 + 10*t^7.54 + 7*t^7.79 + 2*t^7.93 + 2*t^8.04 + t^8.14 + 5*t^8.18 + t^8.29 + 6*t^8.43 + 2*t^8.54 + t^8.57 + 5*t^8.68 + t^8.79 + 3*t^8.82 + t^8.93 + t^8.68/y^2 - t^8.93/y^2 - t^3.89/y - t^4.79/y - t^5.93/y - t^6.32/y - t^6.57/y - t^6.82/y - t^6.96/y - (3*t^7.21)/y + t^7.71/y - t^7.96/y + t^8.36/y + t^8.5/y - t^8.61/y + (2*t^8.75)/y - t^8.86/y - t^3.89*y - t^4.79*y - t^5.93*y - t^6.32*y - t^6.57*y - t^6.82*y - t^6.96*y - 3*t^7.21*y + t^7.71*y - t^7.96*y + t^8.36*y + t^8.5*y - t^8.61*y + 2*t^8.75*y - t^8.86*y + t^8.68*y^2 - t^8.93*y^2 t^2.04/g2^18 + g2^8*t^2.43 + t^2.68/g2^6 + g2^20*t^3.07 + (g1^3*t^3.32)/g2^9 + (g2^21*t^3.32)/g1^3 + t^4.07/g2^36 + (g1^3*t^4.21)/g2^11 + g2^4*t^4.21 + (g2^19*t^4.21)/g1^3 + (2*t^4.46)/g2^10 + t^4.71/g2^24 + 2*g2^16*t^4.86 + (g1^3*t^5.11)/g2^13 + 2*g2^2*t^5.11 + (g2^17*t^5.11)/g1^3 + (g1^3*t^5.36)/g2^27 + (2*t^5.36)/g2^12 + (g2^3*t^5.36)/g1^3 + g2^28*t^5.5 + (g1^3*t^5.75)/g2 + g2^14*t^5.75 + (g2^29*t^5.75)/g1^3 - 2*t^6. + (g1^3*t^6.)/g2^15 + (g2^15*t^6.)/g1^3 + t^6.11/g2^54 + g2^40*t^6.14 + t^6.25/g2^14 + g1^3*g2^11*t^6.39 + (g2^41*t^6.39)/g1^3 + (2*t^6.5)/g2^28 + (g1^6*t^6.64)/g2^18 + (g1^3*t^6.64)/g2^3 + 2*g2^12*t^6.64 + (g2^27*t^6.64)/g1^3 + (g2^42*t^6.64)/g1^6 + t^6.75/g2^42 + (g1^3*t^6.89)/g2^17 + (3*t^6.89)/g2^2 + (g2^13*t^6.89)/g1^3 + (3*t^7.14)/g2^16 + (g1^6*t^7.29)/g2^6 + g1^3*g2^9*t^7.29 + 3*g2^24*t^7.29 + (g2^39*t^7.29)/g1^3 + (g2^54*t^7.29)/g1^6 + (g1^3*t^7.39)/g2^45 + (2*t^7.39)/g2^30 + t^7.39/(g1^3*g2^15) + (g1^6*t^7.54)/g2^20 + (2*g1^3*t^7.54)/g2^5 + 4*g2^10*t^7.54 + (2*g2^25*t^7.54)/g1^3 + (g2^40*t^7.54)/g1^6 + (2*g1^3*t^7.79)/g2^19 + (3*t^7.79)/g2^4 + (2*g2^11*t^7.79)/g1^3 + 2*g2^36*t^7.93 + (g1^3*t^8.04)/g2^33 + t^8.04/(g1^3*g2^3) + t^8.14/g2^72 + 2*g1^3*g2^7*t^8.18 + g2^22*t^8.18 + (2*g2^37*t^8.18)/g1^3 + t^8.29/g2^32 + (g1^6*t^8.43)/g2^22 + (2*g1^3*t^8.43)/g2^7 + (2*g2^23*t^8.43)/g1^3 + (g2^38*t^8.43)/g1^6 + (2*t^8.54)/g2^46 + g2^48*t^8.57 + (g1^6*t^8.68)/g2^36 + (g1^3*t^8.68)/g2^21 + t^8.68/g2^6 + (g2^9*t^8.68)/g1^3 + (g2^24*t^8.68)/g1^6 + t^8.79/g2^60 + g1^3*g2^19*t^8.82 + g2^34*t^8.82 + (g2^49*t^8.82)/g1^3 + t^8.93/g2^20 + t^8.68/(g2^6*y^2) - t^8.93/(g2^20*y^2) - t^3.89/(g2^2*y) - t^4.79/(g2^4*y) - t^5.93/(g2^20*y) - (g2^6*t^6.32)/y - t^6.57/(g2^8*y) - t^6.82/(g2^22*y) - (g2^18*t^6.96)/y - (g1^3*t^7.21)/(g2^11*y) - (g2^4*t^7.21)/y - (g2^19*t^7.21)/(g1^3*y) + t^7.71/(g2^24*y) - t^7.96/(g2^38*y) - (g1^3*t^8.11)/(g2^13*y) + (2*g2^2*t^8.11)/y - (g2^17*t^8.11)/(g1^3*y) + (g1^3*t^8.36)/(g2^27*y) - t^8.36/(g2^12*y) + (g2^3*t^8.36)/(g1^3*y) + (g2^28*t^8.5)/y - t^8.61/(g2^26*y) + (g1^3*t^8.75)/(g2*y) + (g2^29*t^8.75)/(g1^3*y) - t^8.86/(g2^40*y) - (t^3.89*y)/g2^2 - (t^4.79*y)/g2^4 - (t^5.93*y)/g2^20 - g2^6*t^6.32*y - (t^6.57*y)/g2^8 - (t^6.82*y)/g2^22 - g2^18*t^6.96*y - (g1^3*t^7.21*y)/g2^11 - g2^4*t^7.21*y - (g2^19*t^7.21*y)/g1^3 + (t^7.71*y)/g2^24 - (t^7.96*y)/g2^38 - (g1^3*t^8.11*y)/g2^13 + 2*g2^2*t^8.11*y - (g2^17*t^8.11*y)/g1^3 + (g1^3*t^8.36*y)/g2^27 - (t^8.36*y)/g2^12 + (g2^3*t^8.36*y)/g1^3 + g2^28*t^8.5*y - (t^8.61*y)/g2^26 + (g1^3*t^8.75*y)/g2 + (g2^29*t^8.75*y)/g1^3 - (t^8.86*y)/g2^40 + (t^8.68*y^2)/g2^6 - (t^8.93*y^2)/g2^20


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57372 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4704 1.672 0.8794 [X:[1.3641], M:[0.9043, 0.6854], q:[0.5119, 0.4822], qb:[0.5838, 0.5145], phi:[0.3179]] t^2.056 + t^2.713 + t^2.861 + t^2.99 + t^3.079 + t^3.198 + t^4.033 + t^4.092 + t^4.112 + t^4.152 + t^4.241 + t^4.769 + t^4.898 + t^4.917 + t^4.987 + t^5.046 + t^5.105 + t^5.136 + t^5.195 + t^5.254 + t^5.383 + t^5.426 + t^5.472 + t^5.574 + t^5.703 + t^5.723 + t^5.792 + t^5.852 + t^5.941 + t^5.98 - 3*t^6. - t^3.954/y - t^4.908/y - t^3.954*y - t^4.908*y detail