Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58438 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.071 1.2585 0.851 [X:[1.6, 1.4], M:[], q:[0.4, 0.2], qb:[0.8, 0.2], phi:[0.4]] [X:[[0], [0]], M:[], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 1071/1000, c: 2517/2000, X1: 8/5, X2: 7/5, q1: 2/5, q2: 1/5, qb1: 4/5, qb2: 1/5, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ ${}\phi_{1}^{3}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{3}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}\tilde{q}_{2}^{2}$ 8 2*t^2.4 + 2*t^3. + 4*t^3.6 + 3*t^4.2 + 7*t^4.8 + 5*t^5.4 + 8*t^6. + 9*t^6.6 + 19*t^7.2 + 16*t^7.8 + 20*t^8.4 - t^4.2/y - t^5.4/y - t^6.6/y - t^7.2/y - (2*t^7.8)/y + (2*t^8.4)/y - t^4.2*y - t^5.4*y - t^6.6*y - t^7.2*y - 2*t^7.8*y + 2*t^8.4*y 2*t^2.4 + 2*t^3. + 4*t^3.6 + 3*t^4.2 + 7*t^4.8 + 5*t^5.4 + 8*t^6. + 9*t^6.6 + 19*t^7.2 + 16*t^7.8 + 20*t^8.4 - t^4.2/y - t^5.4/y - t^6.6/y - t^7.2/y - (2*t^7.8)/y + (2*t^8.4)/y - t^4.2*y - t^5.4*y - t^6.6*y - t^7.2*y - 2*t^7.8*y + 2*t^8.4*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57368 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ 1.098 1.2855 0.8541 [X:[1.6, 1.4], q:[0.4667, 0.2667], qb:[0.7333, 0.1333], phi:[0.4]] 2*t^2.4 + 2*t^3. + 3*t^3.6 + 4*t^4.2 + 7*t^4.8 + 5*t^5.4 + 7*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 549/500, c: 2571/2000, X1: 8/5, X2: 7/5, q1: 7/15, q2: 4/15, qb1: 11/15, qb2: 2/15, phi1: 2/5}