Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58433 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4402 1.6521 0.8717 [X:[1.3854], M:[0.7764, 0.7602, 0.7602], q:[0.5182, 0.5344], qb:[0.7055, 0.3981], phi:[0.3073]] [X:[[0, 0, 2]], M:[[1, 1, -6], [-1, -1, 1], [-1, -1, 1]], q:[[-1, -2, 7], [1, 0, 0]], qb:[[0, 1, -1], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ ${}$ -4 2*t^2.28 + t^2.33 + t^2.75 + t^2.77 + t^2.8 + t^3.67 + t^4.16 + 3*t^4.56 + 2*t^4.59 + 2*t^4.61 + 2*t^4.64 + t^4.66 + 2*t^5.03 + 2*t^5.05 + 2*t^5.08 + t^5.09 + t^5.13 + t^5.43 + t^5.5 + 2*t^5.51 + t^5.53 + t^5.55 + 2*t^5.56 + t^5.6 + t^5.63 + t^5.68 + t^5.95 - 4*t^6. - t^6.05 + 3*t^6.35 + t^6.42 + 3*t^6.44 + t^6.47 + t^6.49 + t^6.56 + t^6.6 + 4*t^6.84 + 3*t^6.87 + 3*t^6.89 + t^6.91 + 2*t^6.92 + 2*t^6.94 + t^6.95 + t^6.97 + t^6.99 - t^7.04 + 2*t^7.27 + 3*t^7.31 + 3*t^7.33 + 3*t^7.34 + 5*t^7.36 + 2*t^7.38 + 4*t^7.39 + 4*t^7.41 + t^7.42 + t^7.43 + 2*t^7.44 + t^7.46 + t^7.48 + t^7.53 + t^7.58 - t^7.76 + 2*t^7.78 + 3*t^7.8 + 2*t^7.81 + 2*t^7.83 + 2*t^7.84 + t^7.86 + t^7.88 + t^7.89 + t^7.91 + t^7.92 + t^8.18 + 2*t^8.19 + t^8.22 + t^8.23 + t^8.25 + 4*t^8.26 - 6*t^8.28 + 2*t^8.3 + 5*t^8.31 - 3*t^8.33 + t^8.34 + 2*t^8.36 + t^8.39 + t^8.4 + 2*t^8.43 + t^8.45 + t^8.48 + 3*t^8.63 + t^8.7 + 4*t^8.72 - 4*t^8.75 - 2*t^8.77 - 5*t^8.8 - t^8.85 - t^8.89 - t^8.93 + t^8.77/y^2 - t^3.92/y - t^4.84/y - (2*t^6.2)/y - t^6.25/y - t^6.67/y - t^6.69/y - t^6.72/y - (2*t^7.12)/y - t^7.17/y + t^7.56/y - t^7.59/y + t^7.61/y + (2*t^8.03)/y + (2*t^8.05)/y + (3*t^8.08)/y + t^8.09/y + t^8.13/y - (3*t^8.48)/y - (2*t^8.53)/y + t^8.55/y + t^8.56/y - t^8.58/y - (2*t^8.97)/y - t^3.92*y - t^4.84*y - 2*t^6.2*y - t^6.25*y - t^6.67*y - t^6.69*y - t^6.72*y - 2*t^7.12*y - t^7.17*y + t^7.56*y - t^7.59*y + t^7.61*y + 2*t^8.03*y + 2*t^8.05*y + 3*t^8.08*y + t^8.09*y + t^8.13*y - 3*t^8.48*y - 2*t^8.53*y + t^8.55*y + t^8.56*y - t^8.58*y - 2*t^8.97*y + t^8.77*y^2 (2*g3*t^2.28)/(g1*g2) + (g1*g2*t^2.33)/g3^6 + (g3^7*t^2.75)/(g1*g2) + t^2.77/g3^3 + g1*g2*t^2.8 + (g3^6*t^3.67)/(g1*g2) + g3^2*t^4.16 + (3*g3^2*t^4.56)/(g1^2*g2^2) + (2*g3^5*t^4.59)/(g1*g2) + (2*t^4.61)/g3^5 + (2*g1*g2*t^4.64)/g3^2 + (g1^2*g2^2*t^4.66)/g3^12 + (2*g3^8*t^5.03)/(g1^2*g2^2) + (2*t^5.05)/(g1*g2*g3^2) + 2*g3*t^5.08 + (g1*g2*t^5.09)/g3^9 + (g1^2*g2^2*t^5.13)/g3^6 + (g2^3*t^5.43)/g3^2 + (g3^14*t^5.5)/(g1^2*g2^2) + (2*g3^4*t^5.51)/(g1*g2) + t^5.53/g3^6 + g3^7*t^5.55 + (2*g1*g2*t^5.56)/g3^3 + g1^2*g2^2*t^5.6 + (g3^13*t^5.63)/(g1*g2^4) + (g1*g3^6*t^5.68)/g2^2 + (g3^7*t^5.95)/(g1^2*g2^2) - 4*t^6. - (g1^2*g2^2*t^6.05)/g3^7 + (3*g2^3*t^6.35)/g3^3 + (g3^13*t^6.42)/(g1^2*g2^2) + (3*g3^3*t^6.44)/(g1*g2) + g3^6*t^6.47 + (g1*g2*t^6.49)/g3^4 + (g3^12*t^6.56)/(g1*g2^4) + (g1*g3^5*t^6.6)/g2^2 + (4*g3^3*t^6.84)/(g1^3*g2^3) + (3*g3^6*t^6.87)/(g1^2*g2^2) + (3*t^6.89)/(g1*g2*g3^4) + (g3^9*t^6.91)/(g1*g2) + (2*t^6.92)/g3 + (2*g1*g2*t^6.94)/g3^11 + g1*g2*g3^2*t^6.95 + (g1^2*g2^2*t^6.97)/g3^8 + (g1^3*g2^3*t^6.99)/g3^18 - (g3^8*t^7.04)/g2^3 + (2*g2^3*t^7.27)/g3^4 + (3*g3^9*t^7.31)/(g1^3*g2^3) + (3*t^7.33)/(g1^2*g2^2*g3) + (3*g3^12*t^7.34)/(g1^2*g2^2) + (5*g3^2*t^7.36)/(g1*g2) + (2*t^7.38)/g3^8 + 4*g3^5*t^7.39 + (4*g1*g2*t^7.41)/g3^5 + (g1^2*g2^2*t^7.42)/g3^15 + (g3^18*t^7.43)/(g1^3*g2^6) + (2*g1^2*g2^2*t^7.44)/g3^2 + (g1^3*g2^3*t^7.46)/g3^12 + (g3^11*t^7.48)/(g1*g2^4) + (g1*g3^4*t^7.53)/g2^2 + (g1^3*t^7.58)/g3^3 - (g1*g2^4*t^7.76)/g3^8 + (2*g3^15*t^7.78)/(g1^3*g2^3) + (3*g3^5*t^7.8)/(g1^2*g2^2) + (2*t^7.81)/(g1*g2*g3^5) + (2*g3^8*t^7.83)/(g1*g2) + (2*t^7.84)/g3^2 + (g1*g2*t^7.86)/g3^12 + g1*g2*g3*t^7.88 + (g1^2*g2^2*t^7.89)/g3^9 + (g3^14*t^7.91)/(g1^2*g2^5) + (g1^3*g2^3*t^7.92)/g3^6 + (g2^2*g3^5*t^8.18)/g1 + (2*g2^3*t^8.19)/g3^5 + (g1*g2^4*t^8.22)/g3^2 + (g3^8*t^8.23)/(g1^3*g2^3) + (g3^21*t^8.25)/(g1^3*g2^3) + (4*g3^11*t^8.26)/(g1^2*g2^2) - (6*g3*t^8.28)/(g1*g2) + t^8.3/g3^9 + (g3^14*t^8.3)/(g1*g2) + 5*g3^4*t^8.31 - (3*g1*g2*t^8.33)/g3^6 + g1*g2*g3^7*t^8.34 + (2*g1^2*g2^2*t^8.36)/g3^3 - (g1^3*g2^3*t^8.38)/g3^13 + (g3^20*t^8.38)/(g1^2*g2^5) + g1^3*g2^3*t^8.39 + (g3^10*t^8.4)/(g1*g2^4) + (2*g3^13*t^8.43)/g2^3 + (g1*g3^3*t^8.45)/g2^2 + (g1^2*g3^6*t^8.48)/g2 + (3*g2^2*t^8.63)/(g1*g3^2) + (g3^14*t^8.7)/(g1^3*g2^3) + (4*g3^4*t^8.72)/(g1^2*g2^2) - (4*g3^7*t^8.75)/(g1*g2) - (2*t^8.77)/g3^3 - 5*g1*g2*t^8.8 - (g1^3*g2^3*t^8.85)/g3^7 - (g3^6*t^8.89)/g2^3 - (g1^2*t^8.93)/(g2*g3) + t^8.77/(g3^3*y^2) - t^3.92/(g3*y) - t^4.84/(g3^2*y) - (2*t^6.2)/(g1*g2*y) - (g1*g2*t^6.25)/(g3^7*y) - (g3^6*t^6.67)/(g1*g2*y) - t^6.69/(g3^4*y) - (g1*g2*t^6.72)/(g3*y) - (2*t^7.12)/(g1*g2*g3*y) - (g1*g2*t^7.17)/(g3^8*y) + (g3^2*t^7.56)/(g1^2*g2^2*y) - (g3^5*t^7.59)/(g1*g2*y) + t^7.61/(g3^5*y) + (2*g3^8*t^8.03)/(g1^2*g2^2*y) + (2*t^8.05)/(g1*g2*g3^2*y) + (3*g3*t^8.08)/y + (g1*g2*t^8.09)/(g3^9*y) + (g1^2*g2^2*t^8.13)/(g3^6*y) - (3*g3*t^8.48)/(g1^2*g2^2*y) - (2*t^8.53)/(g3^6*y) + (g3^7*t^8.55)/y + (g1*g2*t^8.56)/(g3^3*y) - (g1^2*g2^2*t^8.58)/(g3^13*y) - (2*t^8.97)/(g1*g2*g3^3*y) - (t^3.92*y)/g3 - (t^4.84*y)/g3^2 - (2*t^6.2*y)/(g1*g2) - (g1*g2*t^6.25*y)/g3^7 - (g3^6*t^6.67*y)/(g1*g2) - (t^6.69*y)/g3^4 - (g1*g2*t^6.72*y)/g3 - (2*t^7.12*y)/(g1*g2*g3) - (g1*g2*t^7.17*y)/g3^8 + (g3^2*t^7.56*y)/(g1^2*g2^2) - (g3^5*t^7.59*y)/(g1*g2) + (t^7.61*y)/g3^5 + (2*g3^8*t^8.03*y)/(g1^2*g2^2) + (2*t^8.05*y)/(g1*g2*g3^2) + 3*g3*t^8.08*y + (g1*g2*t^8.09*y)/g3^9 + (g1^2*g2^2*t^8.13*y)/g3^6 - (3*g3*t^8.48*y)/(g1^2*g2^2) - (2*t^8.53*y)/g3^6 + g3^7*t^8.55*y + (g1*g2*t^8.56*y)/g3^3 - (g1^2*g2^2*t^8.58*y)/g3^13 - (2*t^8.97*y)/(g1*g2*g3^3) + (t^8.77*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57371 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.422 1.6203 0.8776 [X:[1.3791], M:[0.7761, 0.7761], q:[0.5214, 0.5214], qb:[0.7025, 0.392], phi:[0.3104]] 2*t^2.328 + 2*t^2.74 + t^2.794 + 2*t^3.672 + t^4.137 + 4*t^4.603 + 3*t^4.657 + 3*t^5.069 + 2*t^5.122 + t^5.391 + 3*t^5.481 + 4*t^5.534 + t^5.588 + 2*t^5.624 - 3*t^6. - t^3.931/y - t^4.863/y - t^3.931*y - t^4.863*y detail