Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58432 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.4168 1.6115 0.8792 [X:[1.396], M:[0.7703, 0.7398], q:[0.5456, 0.5762], qb:[0.6841, 0.382], phi:[0.302]] [X:[[0, 2]], M:[[3, -12], [-3, 7]], q:[[-4, 13], [2, -6]], qb:[[1, -1], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$ ${}$ -2 t^2.22 + t^2.31 + t^2.72 + t^2.78 + t^2.87 + t^3.69 + t^3.78 + t^4.19 + t^4.44 + t^4.53 + 2*t^4.6 + t^4.62 + 2*t^4.69 + t^4.94 + t^5. + t^5.03 + t^5.09 + t^5.19 + t^5.25 + t^5.44 + 2*t^5.5 + t^5.57 + 2*t^5.59 + t^5.66 + t^5.75 + t^5.91 - 2*t^6. + 3*t^6.16 + 2*t^6.41 + t^6.47 + 2*t^6.5 + 2*t^6.56 + 2*t^6.66 + t^6.75 + 2*t^6.81 + t^6.84 + t^6.91 + t^6.93 + t^6.97 + t^7. + 3*t^7.06 + t^7.16 + t^7.22 + t^7.25 + 2*t^7.31 + t^7.34 + 3*t^7.38 + 3*t^7.4 + 4*t^7.47 + t^7.5 + 2*t^7.56 + t^7.63 + t^7.66 + 2*t^7.72 + t^7.75 + t^7.79 + t^7.81 + t^7.88 + 2*t^7.9 + 3*t^7.97 + t^8.03 + t^8.06 + t^8.13 + t^8.15 - 2*t^8.22 + 4*t^8.28 - t^8.31 + t^8.35 + 7*t^8.38 + t^8.44 + 4*t^8.47 + t^8.53 + t^8.62 + 2*t^8.63 + t^8.69 - t^8.72 - 2*t^8.78 + t^8.81 + t^8.87 + t^8.88 + 4*t^8.94 + t^8.97 + t^8.72/y^2 - t^3.91/y - t^4.81/y - t^6.13/y - t^6.22/y - t^6.62/y - t^6.69/y - t^6.78/y - t^7.03/y - t^7.12/y - t^7.6/y - t^7.69/y + t^7.94/y + t^8./y + t^8.03/y + (2*t^8.09)/y + t^8.19/y - t^8.34/y - t^8.44/y - t^8.53/y + t^8.66/y - t^8.84/y - t^8.94/y - t^3.91*y - t^4.81*y - t^6.13*y - t^6.22*y - t^6.62*y - t^6.69*y - t^6.78*y - t^7.03*y - t^7.12*y - t^7.6*y - t^7.69*y + t^7.94*y + t^8.*y + t^8.03*y + 2*t^8.09*y + t^8.19*y - t^8.34*y - t^8.44*y - t^8.53*y + t^8.66*y - t^8.84*y - t^8.94*y + t^8.72*y^2 (g2^7*t^2.22)/g1^3 + (g1^3*t^2.31)/g2^12 + t^2.72/g2^3 + (g2^13*t^2.78)/g1^3 + (g1^3*t^2.87)/g2^6 + (g2^12*t^3.69)/g1^3 + (g1^3*t^3.78)/g2^7 + g2^2*t^4.19 + (g2^14*t^4.44)/g1^6 + t^4.53/g2^5 + (2*g2^11*t^4.6)/g1^3 + (g1^6*t^4.62)/g2^24 + (2*g1^3*t^4.69)/g2^8 + (g2^4*t^4.94)/g1^3 + (g2^20*t^5.)/g1^6 + (g1^3*t^5.03)/g2^15 + g2*t^5.09 + (g1^6*t^5.19)/g2^18 + (g1^3*t^5.25)/g2^2 + t^5.44/g2^6 + (2*g2^10*t^5.5)/g1^3 + (g2^26*t^5.57)/g1^6 + (2*g1^3*t^5.59)/g2^9 + g2^7*t^5.66 + (g1^6*t^5.75)/g2^12 + (g2^19*t^5.91)/g1^6 - 2*t^6. + (3*g1^3*t^6.16)/g2^3 + (2*g2^9*t^6.41)/g1^3 + (g2^25*t^6.47)/g1^6 + (2*g1^3*t^6.5)/g2^10 + 2*g2^6*t^6.56 + (g1^6*t^6.66)/g2^13 + (g2^21*t^6.66)/g1^9 + (g2^2*t^6.75)/g1^3 + (2*g2^18*t^6.81)/g1^6 + (g1^3*t^6.84)/g2^17 + t^6.91/g2 + (g1^9*t^6.93)/g2^36 + (g2^15*t^6.97)/g1^3 + (g1^6*t^7.)/g2^20 + (3*g1^3*t^7.06)/g2^4 + (g2^11*t^7.16)/g1^6 + (g2^27*t^7.22)/g1^9 + t^7.25/g2^8 + (2*g2^8*t^7.31)/g1^3 + (g1^6*t^7.34)/g2^27 + (3*g2^24*t^7.38)/g1^6 + (3*g1^3*t^7.4)/g2^11 + 4*g2^5*t^7.47 + (g1^9*t^7.5)/g2^30 + (2*g1^6*t^7.56)/g2^14 + (g2^36*t^7.63)/g1^12 + (g2*t^7.66)/g1^3 + (2*g2^17*t^7.72)/g1^6 + (g1^3*t^7.75)/g2^18 + (g2^33*t^7.79)/g1^9 + t^7.81/g2^2 + (g2^14*t^7.88)/g1^3 + (2*g1^6*t^7.9)/g2^21 + (3*g1^3*t^7.97)/g2^5 + g2^11*t^8.03 + (g1^9*t^8.06)/g2^24 + (g1^6*t^8.13)/g2^8 + t^8.15/g2^9 - (2*g2^7*t^8.22)/g1^3 + (4*g2^23*t^8.28)/g1^6 - (g1^3*t^8.31)/g2^12 + (g2^39*t^8.35)/g1^9 + 7*g2^4*t^8.38 + (g2^20*t^8.44)/g1^3 + (4*g1^6*t^8.47)/g2^15 + g1^3*g2*t^8.53 + (g1^9*t^8.62)/g2^18 + (2*g2^16*t^8.63)/g1^6 + (g2^32*t^8.69)/g1^9 - t^8.72/g2^3 - (2*g2^13*t^8.78)/g1^3 + (g1^6*t^8.81)/g2^22 + (g1^3*t^8.87)/g2^6 + (g2^28*t^8.88)/g1^12 + 4*g2^10*t^8.94 + (g2^9*t^8.97)/g1^6 + t^8.72/(g2^3*y^2) - t^3.91/(g2*y) - t^4.81/(g2^2*y) - (g2^6*t^6.13)/(g1^3*y) - (g1^3*t^6.22)/(g2^13*y) - t^6.62/(g2^4*y) - (g2^12*t^6.69)/(g1^3*y) - (g1^3*t^6.78)/(g2^7*y) - (g2^5*t^7.03)/(g1^3*y) - (g1^3*t^7.12)/(g2^14*y) - (g2^11*t^7.6)/(g1^3*y) - (g1^3*t^7.69)/(g2^8*y) + (g2^4*t^7.94)/(g1^3*y) + (g2^20*t^8.)/(g1^6*y) + (g1^3*t^8.03)/(g2^15*y) + (2*g2*t^8.09)/y + (g1^6*t^8.19)/(g2^18*y) - (g2^13*t^8.34)/(g1^6*y) - t^8.44/(g2^6*y) - (g1^6*t^8.53)/(g2^25*y) + (g2^7*t^8.66)/y - (g2^3*t^8.84)/(g1^3*y) - (g1^3*t^8.94)/(g2^16*y) - (t^3.91*y)/g2 - (t^4.81*y)/g2^2 - (g2^6*t^6.13*y)/g1^3 - (g1^3*t^6.22*y)/g2^13 - (t^6.62*y)/g2^4 - (g2^12*t^6.69*y)/g1^3 - (g1^3*t^6.78*y)/g2^7 - (g2^5*t^7.03*y)/g1^3 - (g1^3*t^7.12*y)/g2^14 - (g2^11*t^7.6*y)/g1^3 - (g1^3*t^7.69*y)/g2^8 + (g2^4*t^7.94*y)/g1^3 + (g2^20*t^8.*y)/g1^6 + (g1^3*t^8.03*y)/g2^15 + 2*g2*t^8.09*y + (g1^6*t^8.19*y)/g2^18 - (g2^13*t^8.34*y)/g1^6 - (t^8.44*y)/g2^6 - (g1^6*t^8.53*y)/g2^25 + g2^7*t^8.66*y - (g2^3*t^8.84*y)/g1^3 - (g1^3*t^8.94*y)/g2^16 + (t^8.72*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57371 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.422 1.6203 0.8776 [X:[1.3791], M:[0.7761, 0.7761], q:[0.5214, 0.5214], qb:[0.7025, 0.392], phi:[0.3104]] 2*t^2.328 + 2*t^2.74 + t^2.794 + 2*t^3.672 + t^4.137 + 4*t^4.603 + 3*t^4.657 + 3*t^5.069 + 2*t^5.122 + t^5.391 + 3*t^5.481 + 4*t^5.534 + t^5.588 + 2*t^5.624 - 3*t^6. - t^3.931/y - t^4.863/y - t^3.931*y - t^4.863*y detail