Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58429 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4103 1.6609 0.8491 [X:[], M:[0.7907, 1.2], q:[0.4094, 0.3907], qb:[0.4, 0.4], phi:[0.4]] [X:[], M:[[1, 1], [0, 0]], q:[[-1, -2], [1, 0]], qb:[[0, 1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 3 3*t^2.37 + 2*t^2.43 + 2*t^3.57 + 2*t^3.6 + t^3.63 + 6*t^4.74 + 3*t^4.77 + 8*t^4.8 + 3*t^4.83 + 3*t^4.86 + 5*t^5.94 + 7*t^5.97 + 3*t^6. + 5*t^6.03 + t^6.06 + 11*t^7.12 + 11*t^7.14 + 20*t^7.17 + 16*t^7.2 + 13*t^7.23 + 6*t^7.26 + 5*t^7.28 + 9*t^8.32 + 18*t^8.34 + 6*t^8.37 + 17*t^8.4 + t^8.43 + 8*t^8.46 + t^8.48 - t^4.2/y - t^5.4/y - (3*t^6.57)/y - (2*t^6.63)/y + (3*t^7.74)/y - (3*t^7.77)/y + (5*t^7.8)/y - t^7.83/y + t^7.86/y + (4*t^8.97)/y - t^4.2*y - t^5.4*y - 3*t^6.57*y - 2*t^6.63*y + 3*t^7.74*y - 3*t^7.77*y + 5*t^7.8*y - t^7.83*y + t^7.86*y + 4*t^8.97*y 3*g1*g2*t^2.37 + (2*t^2.43)/(g1*g2) + 2*g1*g2*t^3.57 + 2*t^3.6 + t^3.63/(g1*g2) + 6*g1^2*g2^2*t^4.74 + (g1*t^4.77)/g2^2 + 2*g1*g2*t^4.77 + 6*t^4.8 + 2*g2^3*t^4.8 + t^4.83/(g1*g2^4) + (2*t^4.83)/(g1*g2) + (3*t^4.86)/(g1^2*g2^2) + 5*g1^2*g2^2*t^5.94 + (g1*t^5.97)/g2^2 + 6*g1*g2*t^5.97 + t^6. + 2*g2^3*t^6. + t^6.03/(g1*g2^4) + (4*t^6.03)/(g1*g2) + t^6.06/(g1^2*g2^2) + g1^3*t^7.12 + 10*g1^3*g2^3*t^7.12 + (3*g1^2*t^7.14)/g2 + 8*g1^2*g2^2*t^7.14 + (g1*t^7.17)/g2^2 + 14*g1*g2*t^7.17 + 5*g1*g2^4*t^7.17 + 9*t^7.2 + (3*t^7.2)/g2^3 + 4*g2^3*t^7.2 + t^7.23/(g1*g2^4) + (9*t^7.23)/(g1*g2) + (3*g2^2*t^7.23)/g1 + (2*t^7.26)/(g1^2*g2^5) + (4*t^7.26)/(g1^2*g2^2) + t^7.28/(g1^3*g2^6) + (4*t^7.28)/(g1^3*g2^3) + 9*g1^3*g2^3*t^8.32 + (3*g1^2*t^8.34)/g2 + 15*g1^2*g2^2*t^8.34 + (g1*t^8.37)/g2^2 + 5*g1*g2^4*t^8.37 + 13*t^8.4 + (2*t^8.4)/g2^3 + 2*g2^3*t^8.4 + t^8.43/(g1*g2^4) - t^8.43/(g1*g2) + (g2^2*t^8.43)/g1 + t^8.46/(g1^2*g2^5) + (7*t^8.46)/(g1^2*g2^2) + t^8.48/(g1^3*g2^3) - t^4.2/y - t^5.4/y - (3*g1*g2*t^6.57)/y - (2*t^6.63)/(g1*g2*y) + (3*g1^2*g2^2*t^7.74)/y - (3*g1*g2*t^7.77)/y + (5*t^7.8)/y - t^7.83/(g1*g2*y) + t^7.86/(g1^2*g2^2*y) + (4*g1*g2*t^8.97)/y - t^4.2*y - t^5.4*y - 3*g1*g2*t^6.57*y - (2*t^6.63*y)/(g1*g2) + 3*g1^2*g2^2*t^7.74*y - 3*g1*g2*t^7.77*y + 5*t^7.8*y - (t^7.83*y)/(g1*g2) + (t^7.86*y)/(g1^2*g2^2) + 4*g1*g2*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57350 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.4268 1.6899 0.8443 [M:[0.7907], q:[0.4094, 0.3907], qb:[0.4, 0.4], phi:[0.4]] 3*t^2.372 + t^2.4 + 2*t^2.428 + 2*t^3.572 + t^3.6 + t^3.628 + 6*t^4.744 + 6*t^4.772 + 9*t^4.8 + 5*t^4.828 + 3*t^4.856 + 5*t^5.944 + 6*t^5.972 + 4*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail