Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58429 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ | 1.4103 | 1.6609 | 0.8491 | [X:[], M:[0.7907, 1.2], q:[0.4094, 0.3907], qb:[0.4, 0.4], phi:[0.4]] | [X:[], M:[[1, 1], [0, 0]], q:[[-1, -2], [1, 0]], qb:[[0, 1], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 3 | 3*t^2.37 + 2*t^2.43 + 2*t^3.57 + 2*t^3.6 + t^3.63 + 6*t^4.74 + 3*t^4.77 + 8*t^4.8 + 3*t^4.83 + 3*t^4.86 + 5*t^5.94 + 7*t^5.97 + 3*t^6. + 5*t^6.03 + t^6.06 + 11*t^7.12 + 11*t^7.14 + 20*t^7.17 + 16*t^7.2 + 13*t^7.23 + 6*t^7.26 + 5*t^7.28 + 9*t^8.32 + 18*t^8.34 + 6*t^8.37 + 17*t^8.4 + t^8.43 + 8*t^8.46 + t^8.48 - t^4.2/y - t^5.4/y - (3*t^6.57)/y - (2*t^6.63)/y + (3*t^7.74)/y - (3*t^7.77)/y + (5*t^7.8)/y - t^7.83/y + t^7.86/y + (4*t^8.97)/y - t^4.2*y - t^5.4*y - 3*t^6.57*y - 2*t^6.63*y + 3*t^7.74*y - 3*t^7.77*y + 5*t^7.8*y - t^7.83*y + t^7.86*y + 4*t^8.97*y | 3*g1*g2*t^2.37 + (2*t^2.43)/(g1*g2) + 2*g1*g2*t^3.57 + 2*t^3.6 + t^3.63/(g1*g2) + 6*g1^2*g2^2*t^4.74 + (g1*t^4.77)/g2^2 + 2*g1*g2*t^4.77 + 6*t^4.8 + 2*g2^3*t^4.8 + t^4.83/(g1*g2^4) + (2*t^4.83)/(g1*g2) + (3*t^4.86)/(g1^2*g2^2) + 5*g1^2*g2^2*t^5.94 + (g1*t^5.97)/g2^2 + 6*g1*g2*t^5.97 + t^6. + 2*g2^3*t^6. + t^6.03/(g1*g2^4) + (4*t^6.03)/(g1*g2) + t^6.06/(g1^2*g2^2) + g1^3*t^7.12 + 10*g1^3*g2^3*t^7.12 + (3*g1^2*t^7.14)/g2 + 8*g1^2*g2^2*t^7.14 + (g1*t^7.17)/g2^2 + 14*g1*g2*t^7.17 + 5*g1*g2^4*t^7.17 + 9*t^7.2 + (3*t^7.2)/g2^3 + 4*g2^3*t^7.2 + t^7.23/(g1*g2^4) + (9*t^7.23)/(g1*g2) + (3*g2^2*t^7.23)/g1 + (2*t^7.26)/(g1^2*g2^5) + (4*t^7.26)/(g1^2*g2^2) + t^7.28/(g1^3*g2^6) + (4*t^7.28)/(g1^3*g2^3) + 9*g1^3*g2^3*t^8.32 + (3*g1^2*t^8.34)/g2 + 15*g1^2*g2^2*t^8.34 + (g1*t^8.37)/g2^2 + 5*g1*g2^4*t^8.37 + 13*t^8.4 + (2*t^8.4)/g2^3 + 2*g2^3*t^8.4 + t^8.43/(g1*g2^4) - t^8.43/(g1*g2) + (g2^2*t^8.43)/g1 + t^8.46/(g1^2*g2^5) + (7*t^8.46)/(g1^2*g2^2) + t^8.48/(g1^3*g2^3) - t^4.2/y - t^5.4/y - (3*g1*g2*t^6.57)/y - (2*t^6.63)/(g1*g2*y) + (3*g1^2*g2^2*t^7.74)/y - (3*g1*g2*t^7.77)/y + (5*t^7.8)/y - t^7.83/(g1*g2*y) + t^7.86/(g1^2*g2^2*y) + (4*g1*g2*t^8.97)/y - t^4.2*y - t^5.4*y - 3*g1*g2*t^6.57*y - (2*t^6.63*y)/(g1*g2) + 3*g1^2*g2^2*t^7.74*y - 3*g1*g2*t^7.77*y + 5*t^7.8*y - (t^7.83*y)/(g1*g2) + (t^7.86*y)/(g1^2*g2^2) + 4*g1*g2*t^8.97*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57350 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ | 1.4268 | 1.6899 | 0.8443 | [M:[0.7907], q:[0.4094, 0.3907], qb:[0.4, 0.4], phi:[0.4]] | 3*t^2.372 + t^2.4 + 2*t^2.428 + 2*t^3.572 + t^3.6 + t^3.628 + 6*t^4.744 + 6*t^4.772 + 9*t^4.8 + 5*t^4.828 + 3*t^4.856 + 5*t^5.944 + 6*t^5.972 + 4*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |