Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58390 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ 1.333 1.6009 0.8326 [X:[], M:[0.7128], q:[0.5624, 0.4752], qb:[0.3248, 0.2376], phi:[0.4]] [X:[], M:[[3]], q:[[-1], [2]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ ${2}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 12 2*t^2.14 + 3*t^2.4 + t^2.66 + t^3.34 + 4*t^3.6 + t^3.86 + 3*t^4.28 + 7*t^4.54 + 11*t^4.8 + 5*t^5.06 + t^5.32 + 2*t^5.48 + 11*t^5.74 + 12*t^6. + 5*t^6.26 + 4*t^6.42 + 2*t^6.52 + 12*t^6.68 + 25*t^6.94 + 31*t^7.2 + 13*t^7.46 + 3*t^7.62 + 5*t^7.72 + 20*t^7.88 + t^7.98 + 30*t^8.14 + 30*t^8.4 + 5*t^8.55 + 15*t^8.66 + 17*t^8.82 + 7*t^8.92 - t^4.2/y - t^5.4/y - (2*t^6.34)/y - (3*t^6.6)/y - t^6.86/y + t^7.28/y + (4*t^7.54)/y + (2*t^7.8)/y + (3*t^8.06)/y - t^8.48/y + (4*t^8.74)/y - t^4.2*y - t^5.4*y - 2*t^6.34*y - 3*t^6.6*y - t^6.86*y + t^7.28*y + 4*t^7.54*y + 2*t^7.8*y + 3*t^8.06*y - t^8.48*y + 4*t^8.74*y 2*g1^3*t^2.14 + 3*t^2.4 + t^2.66/g1^3 + g1^3*t^3.34 + 4*t^3.6 + t^3.86/g1^3 + 3*g1^6*t^4.28 + 7*g1^3*t^4.54 + 11*t^4.8 + (5*t^5.06)/g1^3 + t^5.32/g1^6 + 2*g1^6*t^5.48 + 11*g1^3*t^5.74 + 12*t^6. + (5*t^6.26)/g1^3 + 4*g1^9*t^6.42 + (2*t^6.52)/g1^6 + 12*g1^6*t^6.68 + 25*g1^3*t^6.94 + 31*t^7.2 + (13*t^7.46)/g1^3 + 3*g1^9*t^7.62 + (5*t^7.72)/g1^6 + 20*g1^6*t^7.88 + t^7.98/g1^9 + 30*g1^3*t^8.14 + 30*t^8.4 + 5*g1^12*t^8.55 + (15*t^8.66)/g1^3 + 17*g1^9*t^8.82 + (7*t^8.92)/g1^6 - t^4.2/y - t^5.4/y - (2*g1^3*t^6.34)/y - (3*t^6.6)/y - t^6.86/(g1^3*y) + (g1^6*t^7.28)/y + (4*g1^3*t^7.54)/y + (2*t^7.8)/y + (3*t^8.06)/(g1^3*y) - (g1^6*t^8.48)/y + (4*g1^3*t^8.74)/y - t^4.2*y - t^5.4*y - 2*g1^3*t^6.34*y - 3*t^6.6*y - (t^6.86*y)/g1^3 + g1^6*t^7.28*y + 4*g1^3*t^7.54*y + 2*t^7.8*y + (3*t^8.06*y)/g1^3 - g1^6*t^8.48*y + 4*g1^3*t^8.74*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57347 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3452 1.6133 0.8338 [M:[0.7103], q:[0.591, 0.4181], qb:[0.2987, 0.2923], phi:[0.4]] 2*t^2.131 + t^2.15 + t^2.4 + t^2.65 + t^2.669 + t^3.331 + t^3.35 + t^3.6 + 2*t^3.85 + t^3.869 + 3*t^4.262 + 2*t^4.281 + t^4.301 + 3*t^4.531 + 2*t^4.55 + 2*t^4.781 + 4*t^4.8 + t^4.819 + 3*t^5.05 + 3*t^5.069 + t^5.299 + t^5.319 + t^5.338 + 2*t^5.462 + 3*t^5.481 + t^5.501 + 3*t^5.731 + 2*t^5.75 + 4*t^5.981 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail