Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58388 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.3187 1.5817 0.8337 [X:[], M:[0.7923], q:[0.5333, 0.5333], qb:[0.2744, 0.2589], phi:[0.4]] [X:[], M:[[1]], q:[[0], [0]], qb:[[-1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 7 3*t^2.38 + t^2.4 + 2*t^2.42 + 3*t^3.58 + t^3.6 + 2*t^3.62 + 6*t^4.75 + 6*t^4.78 + 7*t^4.8 + 5*t^4.82 + 3*t^4.85 + t^5.93 + 8*t^5.95 + 7*t^5.98 + 7*t^6. + 5*t^6.02 + 3*t^6.05 + t^6.07 + 10*t^7.13 + 18*t^7.15 + 18*t^7.18 + 19*t^7.2 + 13*t^7.22 + 9*t^7.25 + 4*t^7.27 + 3*t^8.31 + 15*t^8.33 + 23*t^8.35 + 15*t^8.38 + 24*t^8.4 + 9*t^8.42 + 12*t^8.45 + 4*t^8.47 + 2*t^8.49 - t^4.2/y - t^5.4/y - (3*t^6.58)/y - t^6.6/y - (2*t^6.62)/y + (3*t^7.75)/y + (5*t^7.8)/y + t^7.82/y + t^7.85/y + (3*t^8.95)/y + t^8.98/y - t^4.2*y - t^5.4*y - 3*t^6.58*y - t^6.6*y - 2*t^6.62*y + 3*t^7.75*y + 5*t^7.8*y + t^7.82*y + t^7.85*y + 3*t^8.95*y + t^8.98*y 3*g1*t^2.38 + t^2.4 + (2*t^2.42)/g1 + 3*g1*t^3.58 + t^3.6 + (2*t^3.62)/g1 + 6*g1^2*t^4.75 + 6*g1*t^4.78 + 7*t^4.8 + (5*t^4.82)/g1 + (3*t^4.85)/g1^2 + g1^3*t^5.93 + 8*g1^2*t^5.95 + 7*g1*t^5.98 + 7*t^6. + (5*t^6.02)/g1 + (3*t^6.05)/g1^2 + t^6.07/g1^3 + 10*g1^3*t^7.13 + 18*g1^2*t^7.15 + 18*g1*t^7.18 + 19*t^7.2 + (13*t^7.22)/g1 + (9*t^7.25)/g1^2 + (4*t^7.27)/g1^3 + 3*g1^4*t^8.31 + 15*g1^3*t^8.33 + 23*g1^2*t^8.35 + 15*g1*t^8.38 + 24*t^8.4 + (9*t^8.42)/g1 + (12*t^8.45)/g1^2 + (4*t^8.47)/g1^3 + (2*t^8.49)/g1^4 - t^4.2/y - t^5.4/y - (3*g1*t^6.58)/y - t^6.6/y - (2*t^6.62)/(g1*y) + (3*g1^2*t^7.75)/y + (5*t^7.8)/y + t^7.82/(g1*y) + t^7.85/(g1^2*y) + (3*g1^2*t^8.95)/y + (g1*t^8.98)/y - t^4.2*y - t^5.4*y - 3*g1*t^6.58*y - t^6.6*y - (2*t^6.62*y)/g1 + 3*g1^2*t^7.75*y + 5*t^7.8*y + (t^7.82*y)/g1 + (t^7.85*y)/g1^2 + 3*g1^2*t^8.95*y + g1*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57347 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3452 1.6133 0.8338 [M:[0.7103], q:[0.591, 0.4181], qb:[0.2987, 0.2923], phi:[0.4]] 2*t^2.131 + t^2.15 + t^2.4 + t^2.65 + t^2.669 + t^3.331 + t^3.35 + t^3.6 + 2*t^3.85 + t^3.869 + 3*t^4.262 + 2*t^4.281 + t^4.301 + 3*t^4.531 + 2*t^4.55 + 2*t^4.781 + 4*t^4.8 + t^4.819 + 3*t^5.05 + 3*t^5.069 + t^5.299 + t^5.319 + t^5.338 + 2*t^5.462 + 3*t^5.481 + t^5.501 + 3*t^5.731 + 2*t^5.75 + 4*t^5.981 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail