Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58387 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ 1.3293 1.5918 0.8351 [X:[], M:[0.8], q:[0.56, 0.48], qb:[0.24, 0.32], phi:[0.4]] [X:[], M:[[0]], q:[[1], [-2]], qb:[[-1], [2]], phi:[[0]]] 1 {a: 13293/10000, c: 7959/5000, M1: 4/5, q1: 14/25, q2: 12/25, qb1: 6/25, qb2: 8/25, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$ ${}M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}^{3}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 12 t^2.16 + 4*t^2.4 + t^2.64 + t^3.36 + 3*t^3.6 + 2*t^3.84 + t^4.32 + 5*t^4.56 + 14*t^4.8 + 6*t^5.04 + t^5.28 + t^5.52 + 7*t^5.76 + 12*t^6. + 9*t^6.24 + 4*t^6.48 + 6*t^6.72 + 18*t^6.96 + 37*t^7.2 + 20*t^7.44 + 9*t^7.68 + 10*t^7.92 + 22*t^8.16 + 31*t^8.4 + 28*t^8.64 + 20*t^8.88 - t^4.2/y - t^5.4/y - t^6.36/y - (4*t^6.6)/y - t^6.84/y + (3*t^7.56)/y + (4*t^7.8)/y + (3*t^8.04)/y + (2*t^8.76)/y - t^4.2*y - t^5.4*y - t^6.36*y - 4*t^6.6*y - t^6.84*y + 3*t^7.56*y + 4*t^7.8*y + 3*t^8.04*y + 2*t^8.76*y t^2.16/g1^3 + 4*t^2.4 + g1^3*t^2.64 + t^3.36/g1^3 + 3*t^3.6 + 2*g1^3*t^3.84 + t^4.32/g1^6 + (5*t^4.56)/g1^3 + 14*t^4.8 + 6*g1^3*t^5.04 + g1^6*t^5.28 + t^5.52/g1^6 + (7*t^5.76)/g1^3 + 12*t^6. + 9*g1^3*t^6.24 + t^6.48/g1^9 + 3*g1^6*t^6.48 + (6*t^6.72)/g1^6 + (18*t^6.96)/g1^3 + 37*t^7.2 + 20*g1^3*t^7.44 + t^7.68/g1^9 + 8*g1^6*t^7.68 + (9*t^7.92)/g1^6 + g1^9*t^7.92 + (22*t^8.16)/g1^3 + 31*t^8.4 + t^8.64/g1^12 + 27*g1^3*t^8.64 + (6*t^8.88)/g1^9 + 14*g1^6*t^8.88 - t^4.2/y - t^5.4/y - t^6.36/(g1^3*y) - (4*t^6.6)/y - (g1^3*t^6.84)/y + (3*t^7.56)/(g1^3*y) + (4*t^7.8)/y + (3*g1^3*t^8.04)/y + (2*t^8.76)/(g1^3*y) - t^4.2*y - t^5.4*y - (t^6.36*y)/g1^3 - 4*t^6.6*y - g1^3*t^6.84*y + (3*t^7.56*y)/g1^3 + 4*t^7.8*y + 3*g1^3*t^8.04*y + (2*t^8.76*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61090 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.341 1.6124 0.8317 [X:[], M:[0.8, 0.8573], q:[0.5524, 0.4951], qb:[0.2476, 0.3049], phi:[0.4]] t^2.23 + 4*t^2.4 + 2*t^2.57 + 3*t^3.6 + 2*t^3.77 + t^4.46 + 5*t^4.63 + 15*t^4.8 + 10*t^4.97 + 3*t^5.14 + 3*t^5.83 + 11*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57347 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3452 1.6133 0.8338 [M:[0.7103], q:[0.591, 0.4181], qb:[0.2987, 0.2923], phi:[0.4]] 2*t^2.131 + t^2.15 + t^2.4 + t^2.65 + t^2.669 + t^3.331 + t^3.35 + t^3.6 + 2*t^3.85 + t^3.869 + 3*t^4.262 + 2*t^4.281 + t^4.301 + 3*t^4.531 + 2*t^4.55 + 2*t^4.781 + 4*t^4.8 + t^4.819 + 3*t^5.05 + 3*t^5.069 + t^5.299 + t^5.319 + t^5.338 + 2*t^5.462 + 3*t^5.481 + t^5.501 + 3*t^5.731 + 2*t^5.75 + 4*t^5.981 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail