Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58384 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ 1.1733 1.4029 0.8363 [X:[1.6], M:[0.7258], q:[0.6914, 0.2172], qb:[0.1828, 0.5086], phi:[0.4]] [X:[[0]], M:[[3]], q:[[-1], [2]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 6 2*t^2.18 + 2*t^2.4 + t^2.62 + t^3.38 + 3*t^3.6 + t^3.82 + 3*t^4.36 + 5*t^4.58 + 8*t^4.8 + 3*t^5.02 + 2*t^5.24 + 3*t^5.56 + 8*t^5.78 + 6*t^6. + 4*t^6.22 + t^6.44 + 4*t^6.53 + 9*t^6.76 + 17*t^6.98 + 17*t^7.2 + 8*t^7.42 + 4*t^7.64 + 5*t^7.73 + 2*t^7.87 + 14*t^7.96 + 15*t^8.18 + 14*t^8.4 + 5*t^8.62 + 5*t^8.71 + 5*t^8.84 + 14*t^8.93 - t^4.2/y - t^5.4/y - (2*t^6.38)/y - t^6.6/y - t^6.82/y + t^7.36/y + (2*t^7.58)/y + (2*t^8.02)/y - t^8.56/y + (6*t^8.78)/y - t^4.2*y - t^5.4*y - 2*t^6.38*y - t^6.6*y - t^6.82*y + t^7.36*y + 2*t^7.58*y + 2*t^8.02*y - t^8.56*y + 6*t^8.78*y 2*g1^3*t^2.18 + 2*t^2.4 + t^2.62/g1^3 + g1^3*t^3.38 + 3*t^3.6 + t^3.82/g1^3 + 3*g1^6*t^4.36 + 5*g1^3*t^4.58 + 8*t^4.8 + (3*t^5.02)/g1^3 + (2*t^5.24)/g1^6 + 3*g1^6*t^5.56 + 8*g1^3*t^5.78 + 6*t^6. + (4*t^6.22)/g1^3 + t^6.44/g1^6 + 4*g1^9*t^6.53 + 9*g1^6*t^6.76 + 17*g1^3*t^6.98 + 17*t^7.2 + (8*t^7.42)/g1^3 + (4*t^7.64)/g1^6 + 5*g1^9*t^7.73 + (2*t^7.87)/g1^9 + 14*g1^6*t^7.96 + 15*g1^3*t^8.18 + 14*t^8.4 + (5*t^8.62)/g1^3 + 5*g1^12*t^8.71 + (5*t^8.84)/g1^6 + 14*g1^9*t^8.93 - t^4.2/y - t^5.4/y - (2*g1^3*t^6.38)/y - t^6.6/y - t^6.82/(g1^3*y) + (g1^6*t^7.36)/y + (2*g1^3*t^7.58)/y + (2*t^8.02)/(g1^3*y) - (g1^6*t^8.56)/y + (6*g1^3*t^8.78)/y - t^4.2*y - t^5.4*y - 2*g1^3*t^6.38*y - t^6.6*y - (t^6.82*y)/g1^3 + g1^6*t^7.36*y + 2*g1^3*t^7.58*y + (2*t^8.02*y)/g1^3 - g1^6*t^8.56*y + 6*g1^3*t^8.78*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57347 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3452 1.6133 0.8338 [M:[0.7103], q:[0.591, 0.4181], qb:[0.2987, 0.2923], phi:[0.4]] 2*t^2.131 + t^2.15 + t^2.4 + t^2.65 + t^2.669 + t^3.331 + t^3.35 + t^3.6 + 2*t^3.85 + t^3.869 + 3*t^4.262 + 2*t^4.281 + t^4.301 + 3*t^4.531 + 2*t^4.55 + 2*t^4.781 + 4*t^4.8 + t^4.819 + 3*t^5.05 + 3*t^5.069 + t^5.299 + t^5.319 + t^5.338 + 2*t^5.462 + 3*t^5.481 + t^5.501 + 3*t^5.731 + 2*t^5.75 + 4*t^5.981 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail