Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58379 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4595 | 1.747 | 0.8354 | [X:[], M:[0.8, 0.8, 0.8], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] | [X:[], M:[[1, 0, 1], [-1, 0, -1], [0, 0, 0]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] | 3 | {a: 2919/2000, c: 1747/1000, M1: 4/5, M2: 4/5, M3: 4/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 12 | 8*t^2.4 + 2*t^3.6 + 44*t^4.8 + 12*t^6. + 179*t^7.2 + 21*t^8.4 - t^4.2/y - t^5.4/y - (8*t^6.6)/y + (23*t^7.8)/y - t^4.2*y - t^5.4*y - 8*t^6.6*y + 23*t^7.8*y | 2*t^2.4 + t^2.4/(g1*g2) + g1*g2*t^2.4 + (2*t^2.4)/(g1*g3) + 2*g1*g3*t^2.4 + t^3.6/(g1*g2) + g1*g2*t^3.6 + 8*t^4.8 + t^4.8/(g1^2*g2^2) + (3*t^4.8)/(g1*g2) + 3*g1*g2*t^4.8 + g1^2*g2^2*t^4.8 + (3*t^4.8)/(g1^2*g3^2) + t^4.8/(g1*g2^2*g3^2) + (5*t^4.8)/(g1*g3) + (2*t^4.8)/(g1^2*g2*g3) + (g1*t^4.8)/(g2*g3) + (2*g2*t^4.8)/g3 + 5*g1*g3*t^4.8 + (2*g3*t^4.8)/g2 + 2*g1^2*g2*g3*t^4.8 + g2^2*g3*t^4.8 + 3*g1^2*g3^2*t^4.8 + g2*g3^2*t^4.8 - 2*t^6. + t^6./(g1^2*g2^2) + (2*t^6.)/(g1*g2) + 2*g1*g2*t^6. + g1^2*g2^2*t^6. + t^6./(g1*g2^2*g3^2) + t^6./(g1^2*g2*g3) + (g1*t^6.)/(g2*g3) + (g2*t^6.)/g3 + (g3*t^6.)/g2 + g1^2*g2*g3*t^6. + g2^2*g3*t^6. + g2*g3^2*t^6. + 17*t^7.2 + g1^3*t^7.2 + t^7.2/(g1^3*g2^3) + (4*t^7.2)/(g1^2*g2^2) + (9*t^7.2)/(g1*g2) + (2*g1^2*t^7.2)/g2 + 9*g1*g2*t^7.2 + (2*g2^2*t^7.2)/g1 + 4*g1^2*g2^2*t^7.2 + g2^3*t^7.2 + g1^3*g2^3*t^7.2 + (4*t^7.2)/(g1^3*g3^3) + t^7.2/(g1^3*g2^3*g3^3) + (2*t^7.2)/(g1^2*g2^2*g3^3) + (8*t^7.2)/(g1^2*g3^2) + t^7.2/(g1^2*g2^3*g3^2) + (3*t^7.2)/(g1*g2^2*g3^2) + (2*t^7.2)/(g2*g3^2) + (3*t^7.2)/(g1^3*g2*g3^2) + (3*g2*t^7.2)/(g1*g3^2) + (15*t^7.2)/(g1*g3) + (g1^2*t^7.2)/g3 + (2*t^7.2)/(g2^2*g3) + (2*t^7.2)/(g1^3*g2^2*g3) + (6*t^7.2)/(g1^2*g2*g3) + (3*g1*t^7.2)/(g2*g3) + (6*g2*t^7.2)/g3 + (2*g1*g2^2*t^7.2)/g3 + 15*g1*g3*t^7.2 + (2*g3*t^7.2)/(g1*g2^2) + (6*g3*t^7.2)/g2 + (2*g2*g3*t^7.2)/g1 + 6*g1^2*g2*g3*t^7.2 + 3*g2^2*g3*t^7.2 + 2*g1^3*g2^2*g3*t^7.2 + g1*g2^3*g3*t^7.2 + (g3^2*t^7.2)/g1 + 8*g1^2*g3^2*t^7.2 + (3*g1*g3^2*t^7.2)/g2 + 3*g2*g3^2*t^7.2 + 3*g1^3*g2*g3^2*t^7.2 + 2*g1*g2^2*g3^2*t^7.2 + g3^3*t^7.2 + 4*g1^3*g3^3*t^7.2 + 2*g1*g2*g3^3*t^7.2 - 5*t^8.4 + t^8.4/(g1^3*g2^3) + (3*t^8.4)/(g1^2*g2^2) + (g1^2*t^8.4)/g2 + (g2^2*t^8.4)/g1 + 3*g1^2*g2^2*t^8.4 + g1^3*g2^3*t^8.4 + t^8.4/(g1^2*g2^2*g3^3) + t^8.4/(g1^2*g2^3*g3^2) + t^8.4/(g1*g2^2*g3^2) + t^8.4/(g2*g3^2) + t^8.4/(g1^3*g2*g3^2) + (g2*t^8.4)/(g1*g3^2) - (7*t^8.4)/(g1*g3) + (g1^2*t^8.4)/g3 + t^8.4/(g2^2*g3) + t^8.4/(g1^3*g2^2*g3) + (2*t^8.4)/(g1^2*g2*g3) + (g1*t^8.4)/(g2*g3) + (2*g2*t^8.4)/g3 + (g1*g2^2*t^8.4)/g3 - 7*g1*g3*t^8.4 + (g3*t^8.4)/(g1*g2^2) + (2*g3*t^8.4)/g2 + (g2*g3*t^8.4)/g1 + 2*g1^2*g2*g3*t^8.4 + g2^2*g3*t^8.4 + g1^3*g2^2*g3*t^8.4 + g1*g2^3*g3*t^8.4 + (g3^2*t^8.4)/g1 + (g1*g3^2*t^8.4)/g2 + g2*g3^2*t^8.4 + g1^3*g2*g3^2*t^8.4 + g1*g2^2*g3^2*t^8.4 + g1*g2*g3^3*t^8.4 - t^4.2/y - t^5.4/y - (2*t^6.6)/y - t^6.6/(g1*g2*y) - (g1*g2*t^6.6)/y - (2*t^6.6)/(g1*g3*y) - (2*g1*g3*t^6.6)/y + (5*t^7.8)/y + t^7.8/(g1*g2*y) + (g1*g2*t^7.8)/y + t^7.8/(g1^2*g3^2*y) + (3*t^7.8)/(g1*g3*y) + (2*t^7.8)/(g1^2*g2*g3*y) + (2*g2*t^7.8)/(g3*y) + (3*g1*g3*t^7.8)/y + (2*g3*t^7.8)/(g2*y) + (2*g1^2*g2*g3*t^7.8)/y + (g1^2*g3^2*t^7.8)/y - t^4.2*y - t^5.4*y - 2*t^6.6*y - (t^6.6*y)/(g1*g2) - g1*g2*t^6.6*y - (2*t^6.6*y)/(g1*g3) - 2*g1*g3*t^6.6*y + 5*t^7.8*y + (t^7.8*y)/(g1*g2) + g1*g2*t^7.8*y + (t^7.8*y)/(g1^2*g3^2) + (3*t^7.8*y)/(g1*g3) + (2*t^7.8*y)/(g1^2*g2*g3) + (2*g2*t^7.8*y)/g3 + 3*g1*g3*t^7.8*y + (2*g3*t^7.8*y)/g2 + 2*g1^2*g2*g3*t^7.8*y + g1^2*g3^2*t^7.8*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57355 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.443 | 1.718 | 0.8399 | [M:[0.8, 0.8], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] | 7*t^2.4 + 3*t^3.6 + 36*t^4.8 + 17*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail | {a: 1443/1000, c: 859/500, M1: 4/5, M2: 4/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5} |