Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58374 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.356 1.631 0.8314 [X:[], M:[0.7303, 0.8697], q:[0.5842, 0.4316], qb:[0.2855, 0.2987], phi:[0.4]] [X:[], M:[[-2, -1], [2, 1]], q:[[1, 1], [-2, -2]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$ ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 2 t^2.15 + 2*t^2.19 + t^2.4 + 2*t^2.61 + t^2.65 + t^3.35 + t^3.6 + t^3.81 + 2*t^3.85 + t^4.3 + 2*t^4.34 + 3*t^4.38 + 2*t^4.55 + 3*t^4.59 + 2*t^4.76 + 6*t^4.8 + 2*t^4.84 + 4*t^5.01 + 3*t^5.05 + 3*t^5.22 + 2*t^5.26 + t^5.3 + t^5.5 + 2*t^5.54 + 2*t^5.75 + 2*t^5.79 + 2*t^5.96 + 2*t^6. + 3*t^6.04 + t^6.17 + 4*t^6.21 + 4*t^6.25 + t^6.29 + 2*t^6.42 + t^6.45 + 3*t^6.46 + 2*t^6.49 + 2*t^6.5 + 3*t^6.53 + 4*t^6.57 + 3*t^6.7 + 5*t^6.74 + 5*t^6.78 + 2*t^6.91 + 7*t^6.95 + 10*t^6.99 + 3*t^7.03 + 5*t^7.16 + 12*t^7.2 + 5*t^7.24 + 3*t^7.37 + 11*t^7.41 + 8*t^7.45 + t^7.48 + 2*t^7.49 + 7*t^7.62 + t^7.65 + 6*t^7.66 + 2*t^7.69 + 5*t^7.7 + 3*t^7.73 + 4*t^7.83 + 3*t^7.87 + 3*t^7.9 + 2*t^7.91 + 5*t^7.94 + t^7.95 + 3*t^7.98 + 2*t^8.11 + 4*t^8.15 + t^8.19 + 4*t^8.23 + t^8.32 + 7*t^8.36 + 9*t^8.4 + 7*t^8.44 + 2*t^8.48 + 3*t^8.57 + 4*t^8.61 + 2*t^8.64 + 6*t^8.65 + 3*t^8.68 + 3*t^8.69 + 4*t^8.72 + 5*t^8.76 + 2*t^8.78 + 8*t^8.82 + 3*t^8.85 + 10*t^8.86 + 6*t^8.89 + 8*t^8.9 + 7*t^8.93 + t^8.94 + 7*t^8.97 - t^4.2/y - t^5.4/y - t^6.35/y - (2*t^6.39)/y - t^6.6/y - (2*t^6.81)/y - t^6.85/y + (2*t^7.34)/y + t^7.38/y + t^7.59/y + (2*t^7.76)/y + (4*t^7.8)/y + (2*t^7.84)/y + t^8.01/y + t^8.22/y + (2*t^8.26)/y - (3*t^8.58)/y + t^8.96/y - t^4.2*y - t^5.4*y - t^6.35*y - 2*t^6.39*y - t^6.6*y - 2*t^6.81*y - t^6.85*y + 2*t^7.34*y + t^7.38*y + t^7.59*y + 2*t^7.76*y + 4*t^7.8*y + 2*t^7.84*y + t^8.01*y + t^8.22*y + 2*t^8.26*y - 3*t^8.58*y + t^8.96*y t^2.15/(g1*g2^2) + (2*t^2.19)/(g1^2*g2) + t^2.4 + 2*g1^2*g2*t^2.61 + g1*g2^2*t^2.65 + t^3.35/(g1*g2^2) + t^3.6 + g1^2*g2*t^3.81 + 2*g1*g2^2*t^3.85 + t^4.3/(g1^2*g2^4) + (2*t^4.34)/(g1^3*g2^3) + (3*t^4.38)/(g1^4*g2^2) + (2*t^4.55)/(g1*g2^2) + (3*t^4.59)/(g1^2*g2) + (2*g1*t^4.76)/g2 + 6*t^4.8 + (2*g2*t^4.84)/g1 + 4*g1^2*g2*t^5.01 + 3*g1*g2^2*t^5.05 + 3*g1^4*g2^2*t^5.22 + 2*g1^3*g2^3*t^5.26 + g1^2*g2^4*t^5.3 + t^5.5/(g1^2*g2^4) + (2*t^5.54)/(g1^3*g2^3) + (2*t^5.75)/(g1*g2^2) + (2*t^5.79)/(g1^2*g2) + (2*g1*t^5.96)/g2 + 2*t^6. + (3*g2*t^6.04)/g1 + g1^3*t^6.17 + 4*g1^2*g2*t^6.21 + 4*g1*g2^2*t^6.25 + g2^3*t^6.29 + 2*g1^4*g2^2*t^6.42 + t^6.45/(g1^3*g2^6) + 3*g1^3*g2^3*t^6.46 + (2*t^6.49)/(g1^4*g2^5) + 2*g1^2*g2^4*t^6.5 + (3*t^6.53)/(g1^5*g2^4) + (4*t^6.57)/(g1^6*g2^3) + (3*t^6.7)/(g1^2*g2^4) + (5*t^6.74)/(g1^3*g2^3) + (5*t^6.78)/(g1^4*g2^2) + (2*t^6.91)/g2^3 + (7*t^6.95)/(g1*g2^2) + (10*t^6.99)/(g1^2*g2) + (3*t^7.03)/g1^3 + (5*g1*t^7.16)/g2 + 12*t^7.2 + (5*g2*t^7.24)/g1 + 3*g1^3*t^7.37 + 11*g1^2*g2*t^7.41 + 8*g1*g2^2*t^7.45 + t^7.48/(g1^6*g2^6) + 2*g2^3*t^7.49 + 7*g1^4*g2^2*t^7.62 + t^7.65/(g1^3*g2^6) + 6*g1^3*g2^3*t^7.66 + (2*t^7.69)/(g1^4*g2^5) + 5*g1^2*g2^4*t^7.7 + (3*t^7.73)/(g1^5*g2^4) + 4*g1^6*g2^3*t^7.83 + 3*g1^5*g2^4*t^7.87 + (3*t^7.9)/(g1^2*g2^4) + 2*g1^4*g2^5*t^7.91 + (5*t^7.94)/(g1^3*g2^3) + g1^3*g2^6*t^7.95 + (3*t^7.98)/(g1^4*g2^2) + (2*t^8.11)/g2^3 + (4*t^8.15)/(g1*g2^2) + t^8.19/(g1^2*g2) + (4*t^8.23)/g1^3 + (g1^2*t^8.32)/g2^2 + (7*g1*t^8.36)/g2 + 9*t^8.4 + (7*g2*t^8.44)/g1 + (2*g2^2*t^8.48)/g1^2 + 3*g1^3*t^8.57 + t^8.61/(g1^4*g2^8) + 3*g1^2*g2*t^8.61 + (2*t^8.64)/(g1^5*g2^7) + 6*g1*g2^2*t^8.65 + (3*t^8.68)/(g1^6*g2^6) + 3*g2^3*t^8.69 + (4*t^8.72)/(g1^7*g2^5) + (5*t^8.76)/(g1^8*g2^4) + 2*g1^5*g2*t^8.78 + 8*g1^4*g2^2*t^8.82 + (3*t^8.85)/(g1^3*g2^6) + 10*g1^3*g2^3*t^8.86 + (6*t^8.89)/(g1^4*g2^5) + 8*g1^2*g2^4*t^8.9 + (7*t^8.93)/(g1^5*g2^4) + g1*g2^5*t^8.94 + (7*t^8.97)/(g1^6*g2^3) - t^4.2/y - t^5.4/y - t^6.35/(g1*g2^2*y) - (2*t^6.39)/(g1^2*g2*y) - t^6.6/y - (2*g1^2*g2*t^6.81)/y - (g1*g2^2*t^6.85)/y + (2*t^7.34)/(g1^3*g2^3*y) + t^7.38/(g1^4*g2^2*y) + t^7.59/(g1^2*g2*y) + (2*g1*t^7.76)/(g2*y) + (4*t^7.8)/y + (2*g2*t^7.84)/(g1*y) + (g1^2*g2*t^8.01)/y + (g1^4*g2^2*t^8.22)/y + (2*g1^3*g2^3*t^8.26)/y - (3*t^8.58)/(g1^4*g2^2*y) + (g1*t^8.96)/(g2*y) - t^4.2*y - t^5.4*y - (t^6.35*y)/(g1*g2^2) - (2*t^6.39*y)/(g1^2*g2) - t^6.6*y - 2*g1^2*g2*t^6.81*y - g1*g2^2*t^6.85*y + (2*t^7.34*y)/(g1^3*g2^3) + (t^7.38*y)/(g1^4*g2^2) + (t^7.59*y)/(g1^2*g2) + (2*g1*t^7.76*y)/g2 + 4*t^7.8*y + (2*g2*t^7.84*y)/g1 + g1^2*g2*t^8.01*y + g1^4*g2^2*t^8.22*y + 2*g1^3*g2^3*t^8.26*y - (3*t^8.58*y)/(g1^4*g2^2) + (g1*t^8.96*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57355 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.443 1.718 0.8399 [M:[0.8, 0.8], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] 7*t^2.4 + 3*t^3.6 + 36*t^4.8 + 17*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 1443/1000, c: 859/500, M1: 4/5, M2: 4/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}