Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58373 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.3016 1.5446 0.8427 [X:[1.4], M:[0.7118], q:[0.2588, 0.3706], qb:[0.6294, 0.3412], phi:[0.4]] [X:[[0]], M:[[3]], q:[[-2], [1]], qb:[[-1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$ ${}\phi_{1}q_{1}^{2}q_{2}^{2}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ 3 2*t^2.14 + t^2.4 + t^2.66 + 2*t^3. + t^3.34 + t^3.6 + t^3.86 + 4*t^4.2 + 3*t^4.27 + 3*t^4.54 + 3*t^4.8 + 3*t^5.06 + 4*t^5.14 + t^5.33 + 4*t^5.4 + 2*t^5.47 + t^5.66 + 3*t^5.74 + t^5.93 + 3*t^6. + 3*t^6.26 + 9*t^6.34 + 4*t^6.41 + t^6.53 + 6*t^6.6 + 7*t^6.67 + 2*t^6.86 + 7*t^6.94 + 12*t^7.2 + 6*t^7.27 + 4*t^7.46 + 12*t^7.54 + 3*t^7.61 + 3*t^7.73 + 6*t^7.8 + 6*t^7.87 + t^7.99 + 6*t^8.06 + 4*t^8.14 + t^8.33 + 17*t^8.4 + 13*t^8.47 + 5*t^8.54 + t^8.59 + 2*t^8.66 + 15*t^8.74 + 11*t^8.81 + 5*t^8.93 - t^4.2/y - t^5.4/y - (2*t^6.34)/y - t^6.6/y - t^6.86/y - t^7.2/y + t^7.27/y + t^7.8/y + t^8.06/y + (4*t^8.14)/y - t^8.4/y - t^8.47/y + (2*t^8.66)/y - t^4.2*y - t^5.4*y - 2*t^6.34*y - t^6.6*y - t^6.86*y - t^7.2*y + t^7.27*y + t^7.8*y + t^8.06*y + 4*t^8.14*y - t^8.4*y - t^8.47*y + 2*t^8.66*y 2*g1^3*t^2.14 + t^2.4 + t^2.66/g1^3 + 2*t^3. + g1^3*t^3.34 + t^3.6 + t^3.86/g1^3 + 4*t^4.2 + 3*g1^6*t^4.27 + 3*g1^3*t^4.54 + 3*t^4.8 + (3*t^5.06)/g1^3 + 4*g1^3*t^5.14 + t^5.33/g1^6 + 4*t^5.4 + 2*g1^6*t^5.47 + t^5.66/g1^3 + 3*g1^3*t^5.74 + t^5.93/g1^6 + 3*t^6. + (3*t^6.26)/g1^3 + 9*g1^3*t^6.34 + 4*g1^9*t^6.41 + t^6.53/g1^6 + 6*t^6.6 + 7*g1^6*t^6.67 + (2*t^6.86)/g1^3 + 7*g1^3*t^6.94 + 12*t^7.2 + 6*g1^6*t^7.27 + (4*t^7.46)/g1^3 + 12*g1^3*t^7.54 + 3*g1^9*t^7.61 + (3*t^7.73)/g1^6 + 6*t^7.8 + 6*g1^6*t^7.87 + t^7.99/g1^9 + (6*t^8.06)/g1^3 + 4*g1^3*t^8.14 + t^8.33/g1^6 + 17*t^8.4 + 13*g1^6*t^8.47 + 5*g1^12*t^8.54 + t^8.59/g1^9 + (2*t^8.66)/g1^3 + 15*g1^3*t^8.74 + 11*g1^9*t^8.81 + (5*t^8.93)/g1^6 - t^4.2/y - t^5.4/y - (2*g1^3*t^6.34)/y - t^6.6/y - t^6.86/(g1^3*y) - t^7.2/y + (g1^6*t^7.27)/y + t^7.8/y + t^8.06/(g1^3*y) + (4*g1^3*t^8.14)/y - t^8.4/y - (g1^6*t^8.47)/y + (2*t^8.66)/(g1^3*y) - t^4.2*y - t^5.4*y - 2*g1^3*t^6.34*y - t^6.6*y - (t^6.86*y)/g1^3 - t^7.2*y + g1^6*t^7.27*y + t^7.8*y + (t^8.06*y)/g1^3 + 4*g1^3*t^8.14*y - t^8.4*y - g1^6*t^8.47*y + (2*t^8.66*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57346 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.3468 1.5854 0.8495 [X:[1.4], M:[0.7819], q:[0.3076, 0.4894], qb:[0.5106, 0.2924], phi:[0.4]] 2*t^2.346 + t^2.4 + t^2.454 + 2*t^3. + t^3.546 + t^3.6 + 3*t^4.2 + t^4.486 + t^4.514 + 3*t^4.691 + 3*t^4.746 + 3*t^4.8 + 2*t^4.854 + t^4.909 + t^5.059 + t^5.141 + 3*t^5.346 + 3*t^5.4 + t^5.454 + t^5.686 + t^5.714 + 2*t^5.891 + 3*t^5.946 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail