Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58368 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.1852 | 1.4268 | 0.8306 | [X:[1.4], M:[0.7333], q:[0.4889, 0.6222], qb:[0.3778, 0.1111], phi:[0.4]] | [X:[[0]], M:[[3]], q:[[-1], [2]], qb:[[-2], [1]], phi:[[0]]] | 1 | {a: 7111/6000, c: 8561/6000, X1: 7/5, M1: 11/15, q1: 22/45, q2: 28/45, qb1: 17/45, qb2: 1/9, phi1: 2/5} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{4}$ | 5 | 2*t^2.2 + t^2.4 + t^2.6 + 3*t^3. + t^3.4 + t^3.6 + t^3.8 + 4*t^4.2 + 3*t^4.4 + 4*t^4.6 + 3*t^4.8 + 3*t^5. + 6*t^5.2 + 5*t^5.4 + 3*t^5.6 + 3*t^5.8 + 5*t^6. + 3*t^6.2 + 10*t^6.4 + 9*t^6.6 + 10*t^6.8 + 7*t^7. + 15*t^7.2 + 11*t^7.4 + 19*t^7.6 + 10*t^7.8 + 14*t^8. + 7*t^8.2 + 20*t^8.4 + 15*t^8.6 + 26*t^8.8 - t^4.2/y - t^5.4/y - (2*t^6.4)/y - t^6.6/y - t^6.8/y - t^7.2/y + t^7.4/y + t^7.8/y + t^8./y + (6*t^8.2)/y + (2*t^8.6)/y - t^4.2*y - t^5.4*y - 2*t^6.4*y - t^6.6*y - t^6.8*y - t^7.2*y + t^7.4*y + t^7.8*y + t^8.*y + 6*t^8.2*y + 2*t^8.6*y | 2*g1^3*t^2.2 + t^2.4 + t^2.6/g1^3 + 3*t^3. + g1^3*t^3.4 + t^3.6 + t^3.8/g1^3 + 4*t^4.2 + 3*g1^6*t^4.4 + 4*g1^3*t^4.6 + 3*t^4.8 + (3*t^5.)/g1^3 + t^5.2/g1^6 + 5*g1^3*t^5.2 + 5*t^5.4 + t^5.6/g1^3 + 2*g1^6*t^5.6 + 3*g1^3*t^5.8 + 5*t^6. + (3*t^6.2)/g1^3 + t^6.4/g1^6 + 9*g1^3*t^6.4 + 5*t^6.6 + 4*g1^9*t^6.6 + (2*t^6.8)/g1^3 + 8*g1^6*t^6.8 + t^7./g1^6 + 6*g1^3*t^7. + 15*t^7.2 + (4*t^7.4)/g1^3 + 7*g1^6*t^7.4 + (3*t^7.6)/g1^6 + 16*g1^3*t^7.6 + 6*t^7.8 + t^7.8/g1^9 + 3*g1^9*t^7.8 + (7*t^8.)/g1^3 + 7*g1^6*t^8. + t^8.2/g1^6 + 6*g1^3*t^8.2 + 20*t^8.4 + (2*t^8.6)/g1^3 + 13*g1^6*t^8.6 + (3*t^8.8)/g1^6 + 18*g1^3*t^8.8 + 5*g1^12*t^8.8 - t^4.2/y - t^5.4/y - (2*g1^3*t^6.4)/y - t^6.6/y - t^6.8/(g1^3*y) - t^7.2/y + (g1^6*t^7.4)/y + t^7.8/y + t^8./(g1^3*y) + (6*g1^3*t^8.2)/y + (3*t^8.6)/(g1^3*y) - (g1^6*t^8.6)/y - t^4.2*y - t^5.4*y - 2*g1^3*t^6.4*y - t^6.6*y - (t^6.8*y)/g1^3 - t^7.2*y + g1^6*t^7.4*y + t^7.8*y + (t^8.*y)/g1^3 + 6*g1^3*t^8.2*y + (3*t^8.6*y)/g1^3 - g1^6*t^8.6*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57346 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ | 1.3468 | 1.5854 | 0.8495 | [X:[1.4], M:[0.7819], q:[0.3076, 0.4894], qb:[0.5106, 0.2924], phi:[0.4]] | 2*t^2.346 + t^2.4 + t^2.454 + 2*t^3. + t^3.546 + t^3.6 + 3*t^4.2 + t^4.486 + t^4.514 + 3*t^4.691 + 3*t^4.746 + 3*t^4.8 + 2*t^4.854 + t^4.909 + t^5.059 + t^5.141 + 3*t^5.346 + 3*t^5.4 + t^5.454 + t^5.686 + t^5.714 + 2*t^5.891 + 3*t^5.946 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |