Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58365 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.1793 1.4147 0.8336 [X:[1.4], M:[0.8325], q:[0.1225, 0.355], qb:[0.645, 0.4775], phi:[0.4]] [X:[[0]], M:[[3]], q:[[-1], [2]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}\phi_{1}^{2}q_{1}^{4}q_{2}^{2}$, ${ 2}\phi_{1}q_{1}^{2}q_{2}^{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{3}q_{2}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ 4 t^2.3 + t^2.4 + 2*t^2.5 + 3*t^3. + t^3.6 + 2*t^3.7 + 4*t^4.2 + t^4.61 + 3*t^4.7 + 3*t^4.8 + 4*t^4.9 + 3*t^4.99 + 2*t^5.3 + 5*t^5.4 + 4*t^5.5 + t^5.9 + 4*t^6. + 5*t^6.1 + 4*t^6.19 + 2*t^6.5 + 5*t^6.6 + 9*t^6.7 + t^6.79 + t^6.91 + 3*t^7.01 + 3*t^7.1 + 14*t^7.2 + 7*t^7.3 + 9*t^7.39 + 4*t^7.49 + 2*t^7.61 + 7*t^7.7 + 7*t^7.8 + 16*t^7.9 + 5*t^7.99 + t^8.21 + 18*t^8.4 + 6*t^8.5 + 11*t^8.59 + 6*t^8.69 + 2*t^8.81 + 8*t^8.9 - t^4.2/y - t^5.4/y - t^6.5/y - t^6.6/y - (2*t^6.7)/y - t^7.2/y + t^7.7/y + t^7.8/y + t^7.99/y + (3*t^8.3)/y + (6*t^8.5)/y - t^8.81/y - t^4.2*y - t^5.4*y - t^6.5*y - t^6.6*y - 2*t^6.7*y - t^7.2*y + t^7.7*y + t^7.8*y + t^7.99*y + 3*t^8.3*y + 6*t^8.5*y - t^8.81*y t^2.3/g1^3 + t^2.4 + 2*g1^3*t^2.5 + 3*t^3. + t^3.6 + 2*g1^3*t^3.7 + 4*t^4.2 + t^4.61/g1^6 + (3*t^4.7)/g1^3 + 3*t^4.8 + 4*g1^3*t^4.9 + 3*g1^6*t^4.99 + (2*t^5.3)/g1^3 + 5*t^5.4 + 4*g1^3*t^5.5 + t^5.9/g1^3 + 4*t^6. + 5*g1^3*t^6.1 + 4*g1^6*t^6.19 + (2*t^6.5)/g1^3 + 5*t^6.6 + 9*g1^3*t^6.7 + g1^6*t^6.79 + t^6.91/g1^9 + (3*t^7.01)/g1^6 + (3*t^7.1)/g1^3 + 14*t^7.2 + 7*g1^3*t^7.3 + 9*g1^6*t^7.39 + 4*g1^9*t^7.49 + (2*t^7.61)/g1^6 + (7*t^7.7)/g1^3 + 7*t^7.8 + 16*g1^3*t^7.9 + 5*g1^6*t^7.99 + t^8.21/g1^6 + 18*t^8.4 + 6*g1^3*t^8.5 + 11*g1^6*t^8.59 + 6*g1^9*t^8.69 + (2*t^8.81)/g1^6 + (8*t^8.9)/g1^3 - t^4.2/y - t^5.4/y - t^6.5/(g1^3*y) - t^6.6/y - (2*g1^3*t^6.7)/y - t^7.2/y + t^7.7/(g1^3*y) + t^7.8/y + (g1^6*t^7.99)/y + (3*t^8.3)/(g1^3*y) + (6*g1^3*t^8.5)/y - t^8.81/(g1^6*y) - t^4.2*y - t^5.4*y - (t^6.5*y)/g1^3 - t^6.6*y - 2*g1^3*t^6.7*y - t^7.2*y + (t^7.7*y)/g1^3 + t^7.8*y + g1^6*t^7.99*y + (3*t^8.3*y)/g1^3 + 6*g1^3*t^8.5*y - (t^8.81*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57346 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.3468 1.5854 0.8495 [X:[1.4], M:[0.7819], q:[0.3076, 0.4894], qb:[0.5106, 0.2924], phi:[0.4]] 2*t^2.346 + t^2.4 + t^2.454 + 2*t^3. + t^3.546 + t^3.6 + 3*t^4.2 + t^4.486 + t^4.514 + 3*t^4.691 + 3*t^4.746 + 3*t^4.8 + 2*t^4.854 + t^4.909 + t^5.059 + t^5.141 + 3*t^5.346 + 3*t^5.4 + t^5.454 + t^5.686 + t^5.714 + 2*t^5.891 + 3*t^5.946 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail